

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the author and
publisher were aware of those claims, those designations have been printed with initial capital
letters or in all capitals.

The author and publisher of this book have made every effort to ensure that this book’s
information was correct at press time. However, the author and publisher do not assume and
hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors
or omissions, whether such errors or omissions result from negligence, accident, or any other
cause.

Copyright © 2012-2022 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the author, except
for the inclusion of brief quotations in a review. For information regarding permissions, write
to:

RB Whitaker
rbwhitaker@outlook.com

ISBN-13: 978-0-9855801-5-5

Starbound Software

Part 1: The Basics

✓ Page Name XP
 10 Knowledge Check - C# 25
 14 Install Visual Studio 75
 19 Hello, World! 50
 24 What Comes Next 50
 24 The Makings of a Programmer 50
 26 Consolas and Telim 50
 31 The Thing Namer 3000 100
 37 Knowledge Check - Variables 25
 45 The Variable Shop 100
 45 The Variable Shop Returns 50
 48 Knowledge Check - Type System 25
 53 The Triangle Farmer 100
 56 The Four Sisters and the Duckbear 100
 57 The Dominion of Kings 100
 68 The Defense of Consolas 200
 75 Repairing the Clocktower 100
 78 Watchtower 100
 82 Buying Inventory 100
 83 Discounted Inventory 50
 88 The Prototype 100
 89 The Magic Cannon 100
 94 The Replicator of D’To 100
 95 The Laws of Freach 50
 106 Taking a Number 100
 107 Countdown 100
 123 Knowledge Check - Memory 25
 124 Hunting the Manticore 250

Part 2: Object-Oriented Programming

✓ Page Name XP
 131 Knowledge Check - Objects 25
 135 Simula’s Test 100
 143 Simula’s Soups 100
 153 Vin Fletcher’s Arrows 100
 162 Vin’s Trouble 50
 168 The Properties of Arrows 100
 173 Arrow Factories 100
 192 The Point 75
 192 The Color 100
 192 The Card 100
 193 The Locked Door 100
 193 The Password Validator 100
 194 Rock-Paper-Scissors 150
 195 15-Puzzle 150
 195 Hangman 150
 196 Tic-Tac-Toe 300
 206 Packing Inventory 150

✓ Page Name XP
 210 Labeling Inventory 50
 211 The Old Robot 200
 218 Robotic Interface 75
 226 Room Coordinates 50
 232 War Preparations 100
 241 Colored Items 100
 243 The Fountain of Objects 500
 245 Small, Medium, or Large 100
 245 Pits 100
 245 Maelstroms 100
 246 Amaroks 100
 246 Getting Armed 100
 247 Getting Help 100
 250 The Robot Pilot 50
 252 Time in the Cavern 50
 256 Lists of Commands 75

Part 3: Advanced Features

✓ Page Name XP
 269 Knowledge Check - Large Programs 25
 270 The Feud 75
 270 Dueling Traditions 100
 276 Safer Number Crunching 50
 278 Knowledge Check - Methods 25
 278 Better Random 100
 290 Exepti’s Game 100
 295 The Sieve 100
 301 Knowledge Check - Events 25
 302 Charberry Trees 100
 307 Knowledge Check - Lambdas 25
 307 The Lambda Sieve 50
 315 The Long Game 100
 324 The Potion Masters of Pattren 150
 331 Knowledge Check - Operators 25
 331 Navigating Operand City 100
 332 Indexing Operand City 75
 332 Converting Directions to Offsets 50
 341 Knowledge Check - Queries 25
 342 The Three Lenses 100
 349 The Repeating Stream 150
 359 Knowledge Check - Async 25
 359 Asynchronous Random Words 150
 360 Many Random Words 50
 365 Uniter of Adds 75
 366 The Robot Factory 100
 372 Knowledge Check - Unsafe Code 25
 392 Knowledge Check - Other Features 25
 397 Colored Console 100

✓ Page Name XP
 398 The Great Humanizer 100
 403 Knowledge Check - Compiling 25
 408 Knowledge Check - .NET 25
 413 Altar of Publication 100

Part 4: The Endgame

✓ Page Name XP
 419 Core Game: Building Character 300
 420 Core Game: The True Programmer 100
 420 Core Game: Actions and Players 300
 421 Core Game: Attacks 200
 421 Core Game: Damage and HP 150
 422 Core Game: Death 150
 422 Core Game: Battle Series 150
 422 Core Game: The Uncoded One 100
 423 Core Game: The Player Decides 200
 423 Expansion: The Game’s Status 100
 424 Expansion: Items 200
 424 Expansion: Gear 300
 425 Expansion: Stolen Inventory 200
 426 Expansion: Vin Fletcher 200
 426 Expansion: Attack Modifiers 200
 426 Expansion: Damage Types 200
 427 Expansion: Making it Yours ?
 428 Expansion: Restoring Balance 150

Part 5: Bonus Levels

✓ Page Name XP
 441 Knowledge Check - Visual Studio 25
 446 Knowledge Check - Compiler Errors 25
 451 Knowledge Check - Debugging 25

TABLE OF CONTENTS

Acknowledgments xix

 Introduction 1
The Great Game of Programming 1
Book Features 2
I Want Your Feedback 6
An Overview 6

PART 1: THE BASICS
1. The C# Programming Language 9

What is C#? 9
What is .NET? 10

2. Getting an IDE 11
A Comparison of IDEs 11
Installing Visual Studio 13

3. Hello World: Your First Program 15
Creating a New Project 15
A Brief Tour of Visual Studio 17
Compiling and Running Your Program 18
Syntax and Structure 19
Beyond Hello World 24
Compiler Errors, Debuggers, and Configurations 27

4. Comments 29
How to Make Good Comments 30

x TABLE OF CONTENTS

5. Variables 32
What is a Variable? 32
Creating and Using Variables in C# 33
Integers 34
Reading from a Variable Does Not Change It 35
Clever Variable Tricks 35
Variable Names 36

6. The C# Type System 38
Representing Data in Binary 38
Integer Types 39
Text: Characters and Strings 42
Floating-Point Types 43
The bool Type 45
Type Inference 46
The Convert Class and the Parse Methods 47

7. Math 50
Operations and Operators 50
Addition, Subtraction, Multiplication, and Division 51
Compound Expressions and Order of Operations 52
Special Number Values 54
Integer Division vs. Floating-Point Division 54
Division by Zero 55
More Operators 55
Updating Variables 56
Working with Different Types and Casting 58
Overflow and Roundoff Error 60
The Math and MathF Classes 61

8. Console 2.0 63
The Console Class 63
Sharpening Your String Skills 65

9. Decision Making 69
The if Statement 69
The else Statement 73
else if Statements 73
Relational Operators: ==, !=, <, >, <=, >= 74
Using bool in Decision Making 75
Logical Operators 76
Nesting if Statements 77
The Conditional Operator 77

10. Switches 79

TABLE OF CONTENTS xi

Switch Statements 80
Switch Expressions 81
Switches as a Basis for Pattern Matching 82

11. Looping 84
The while Loop 84
The do/while Loop 86
The for Loop 86
break Out of Loops and continue to the Next Pass 87
Nesting Loops 88

12. Arrays 90
Creating Arrays 91
Getting and Setting Values in Arrays 91
Other Ways to Create Arrays 93
Some Examples with Arrays 94
The foreach Loop 95
Multi-Dimensional Arrays 95

13. Methods 97
Defining a Method 97
Calling a Method 99
Passing Data to a Method 101
Returning a Value from a Method 103
Method Overloading 104
Simple Methods with Expressions 105
XML Documentation Comments 106
The Basics of Recursion 107

14. Memory Management 109
Memory and Memory Management 110
The Stack 110
Fixed-Size Stack Frames 115
The Heap 115
Cleaning Up Heap Memory 122

PART 2: OBJECT-ORIENTED PROGRAMMING
15. Object-Oriented Concepts 129

Object-Oriented Concepts 129
16. Enumerations 132

Enumeration Basics 133
Underlying Types 136

17. Tuples 137

xii TABLE OF CONTENTS

The Basics of Tuples 138
Tuple Element Names 139
Tuples and Methods 139
More Tuple Examples 140
Deconstructing Tuples 141
Tuples and Equality 142

18. Classes 144
Defining a New Class 145
Instances of Classes 147
Constructors 148
Object-Oriented Design 153

19. Information Hiding 155
The public and private Accessibility Modifiers 156
Abstraction 159
Type Accessibility Levels and the internal Modifier 160

20. Properties 163
The Basics of Properties 163
Auto-Implemented Properties 166
Immutable Fields and Properties 167
Object Initializer Syntax and Init Properties 168
Anonymous Types 169

21. Static 170
Static Members 170
Static Classes 173

22. Null References 174
Null or Not? 175
Checking for Null 176

23. Object-Oriented Design 178
Requirements 179
Designing the Software 180
Creating Code 185
How to Collaborate 187
Baby Steps 189

24. The Catacombs of the Class 191
The Five Prototypes 191
Object-Oriented Design 194
Tic-Tac-Toe 196

25. Inheritance 198
Inheritance and the object Class 199
Choosing Base Classes 201

TABLE OF CONTENTS xiii

Constructors 202
Casting and Checking for Types 204
The protected Access Modifier 205
Sealed Classes 205

26. Polymorphism 207
Abstract Methods and Classes 209
New Methods 210

27. Interfaces 212
Defining Interfaces 213
Implementing Interfaces 214
Interfaces and Base Classes 215
Explicit Interface Implementations 215
Default Interface Methods 216

28. Structs 219
Memory and Constructors 220
Classes vs. Structs 221
Built-In Type Aliases 225
Boxing and Unboxing 226

29. Records 228
Records 228
Advanced Scenarios 230
Struct- and Class-Based Records 231
When to Use a Record 232

30. Generics 233
The Motivation for Generics 233
Defining a Generic Type 236
Generic Methods 238
Generic Type Constraints 238
The default Operator 240

31. The Fountain of Objects 242
The Main Challenge 243
Expansions 245

32. Some Useful Types 248
The Random Class 249
The DateTime Struct 250
The TimeSpan Struct 251
The Guid Struct 252
The List<T> Class 253
The IEnumerable<T> Interface 256
The Dictionary<TKey, TValue> Class 257

xiv TABLE OF CONTENTS

The Nullable<T> Struct 259
ValueTuple Structs 259
The StringBuilder Class 260

PART 3: ADVANCED TOPICS
33. Managing Larger Programs 263

Using Multiple Files 263
Namespaces and using Directives 264
Traditional Entry Points 268

34. Methods Revisited 271
Optional Arguments 271
Named Arguments 272
Variable Number of Parameters 272
Combinations 273
Passing by Reference 273
Deconstructors 276
Extension Methods 277

35. Error Handling and Exceptions 280
Handling Exceptions 281
Throwing Exceptions 283
The finally Block 284
Exception Guidelines 285
Advanced Exception Handling 288

36. Delegates 291
Delegate Basics 291
The Action, Func, and Predicate Delegates 294
MulticastDelegate and Delegate Chaining 295

37. Events 296
C# Events 296
Event Leaks 300
EventHandler and Friends 300
Custom Event Accessors 301

38. Lambda Expressions 303
Lambda Expression Basics 303
Lambda Statements 305
Closures 306

39. Files 308
The File Class 308
String Manipulation 310
File System Manipulation 312

TABLE OF CONTENTS xv

Other Ways to Access Files 313
40. Pattern Matching 316

The Constant Pattern and the Discard Pattern 317
The Monster Scoring Problem 317
The Type and Declaration Patterns 318
Case Guards 319
The Property Pattern 319
Relational Patterns 320
The and, or, and not Patterns 321
The Positional Pattern 321
The var Pattern 322
Parenthesized Patterns 322
Patterns with Switch Statements and the is Keyword 322
Summary 323

41. Operator Overloading 325
Operator Overloading 326
Indexers 327
Custom Conversions 329

42. Query Expressions 333
Query Expression Basics 334
Method Call Syntax 336
Advanced Queries 338
Deferred Execution 340
LINQ to SQL 341

43. Threads 343
The Basics of Threads 343
Using Threads 344
Thread Safety 347

44. Asynchronous Programming 351
Threads and Callbacks 352
Using Tasks 353
Who Runs My Code? 356
Some Additional Details 358

45. Dynamic Objects 361
Dynamic Type Checking 362
Dynamic Objects 362
Emulating Dynamic Objects with Dictionaries 363
Using ExpandoObject 363
Extending DynamicObject 364
When to Use Dynamic Object Variations 365

xvi TABLE OF CONTENTS

46. Unsafe Code 367
Unsafe Contexts 368
Pointer Types 368
Fixed Statements 369
Stack Allocations 370
Fixed-Size Arrays 370
The sizeof Operator 370
The nint and nuint Types 371
Calling Native Code with Platform Invocation Services 371

47. Other Language Features 373
Iterators and the yield Keyword 374
Constants 375
Attributes 376
Reflection 378
The nameof Operator 379
Nested Types 379
Even More Accessibility Modifiers 380
Bit Manipulation 380
using Statements and the IDisposable Interface 384
Preprocessor Directives 385
Command-Line Arguments 387
Partial Classes 387
The Notorious goto Keyword 388
Generic Covariance and Contravariance 389
Checked and Unchecked Contexts 391
Volatile Fields 392

48. Beyond a Single Project 393
Outgrowing a Single Project 393
NuGet Packages 396

49. Compiling in Depth 399
Hardware 399
Assembly 401
Programming Languages 401
Instruction Set Architectures 402
Virtual Machines and Runtimes 402

50. .NET 404
The History of .NET 404
The Components of .NET 405
Common Infrastructure 405
Base Class Library 406
App Models 407

TABLE OF CONTENTS xvii

51. Publishing 409
Build Configurations 409
Publish Profiles 410

PART 4: THE ENDGAME
52. The Final Battle 417

Overview 418
Core Challenges 419
Expansions 423

53. Into Lands Uncharted 429
Keep Learning 429
Where Do I Go to Get Help? 430
Parting Words 431

PART 5: BONUS LEVELS
A. Visual Studio 435

Windows 435
The Options Dialog 441

B. Compiler Errors 442
Code Problems: Errors, Warnings, and Messages 442
How to Resolve Compiler Errors 443
Common Compiler Errors 445

C. Debugging Your Code 447
Print Debugging 448
Using a Debugger 448
Breakpoints 449
Stepping Through Code 450
Breakpoint Conditions and Actions 451

Glossary 452
Index 468

ACKNOWLEDGMENTS

It is hard to separate the 5th Edition from the 4th Edition when it comes to acknowledgments.
The 4th Edition kept the bones of earlier editions but otherwise was a complete rewrite (twice!).
Despite being 20 years old, C# 9 and 10 have changed the language in meaningful, exciting,
and fundamental ways. Indeed, most random code you find on the Internet now looks like
“old” C# code. These recent changes are somehow both tiny and game-changing. I don’t have
a great way to measure, but I’ve often guessed that the 5th Edition is 98% the same as the 4th
Edition. I might have even called this edition 4.1 if that were that a thing books did. Yet that
last 2%, primarily reflecting C# 10 changes and the fast-evolving language, was enough to feel
a new edition was not only helpful but necessary.

I want to thank the hundreds of people who joined Early Access for 4th and 5th Editions and the
readers who have joined the book’s Discord server. The discussions I have had with you have
changed this book for the better in a thousand different ways. With so many involved, I cannot
thank everyone by name, though you all deserve it for your efforts. Having said that, UD Simon
deserves special mention for providing me with a tsunami of suggestions and error reports
week after week, rivaling the combined total of all other Early Access readers. The book is
immeasurably better because of your collective efforts.

I also need to thank my family. My parents’ confidence and encouragement to do my best have
caused me to do things I could never have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight
of writing a book was unbearable, who read through my book and gave honest, thoughtful,
and creative feedback and guidance. She has been patient with me as I’ve done five editions
of this book over the years. Without her, this book would still be a random scattering of files
buried in some obscure folder on my computer, collecting green silicon-based mold.

I owe all of you my sincerest gratitude.

-RB Whitaker

 INTRODUCTION

THE GREAT GAME OF PROGRAMMING
I have a firmly held personal belief, grown from decades of programming: in a very real sense,
programming is a game. At least, it can be like playing a game with the right mindset.

For me, spending a few hours programming—crafting code that bends these amazing
computational devices to my will and creating worlds of living software—is entertaining and
rewarding. It competes with delving into the Nether in Minecraft, snatching the last Province
card in Dominion, or taking down a reaper in Mass Effect.

I don’t mean that programming is mindless entertainment. It is rarely that. Most of your time
is spent puzzling out the right next step or figuring out why things aren’t working as you
expected. But part of what makes games engaging is that they are challenging. You have to
work for it. You apply creativity and explore possibilities. You practice and gain abilities that
help you win.

You'll be in good shape if you approach programming with this same mindset because
programming requires this same set of skills. Some days, it will feel like you are playing Flappy
Bird, Super Meat Boy, or Dark Souls—all notoriously difficult games—but creating software is
challenging in all the right ways.

The “game” of programming is a massively multiplayer, open-world sandbox game with role-
playing elements. By that, I mean:

• Massively multiplayer: While you may tackle specific problems independently, you are
never alone. Most programmers are quick to share their knowledge and experience with
others. This book and the Internet ensure you are not alone in your journey.

• An open-world sandbox game: You have few constraints or limitations; you can build
what, when, and how you want.

• Role-playing elements: With practice, learning, and experience, you get better in the
skills and tools you work with, going from a lowly Level 1 beginner to a master, sharpening
your skills and abilities as you go.

If programming is to be fun or rewarding, then learning to program must also be so. Rare is
the book that can make learning complex technical topics anything more than tedious. This
book attempts to do just that. If a spoonful of sugar can help the medicine go down, then there

2 LEVEL 1 INTRODUCTION

must be some blend of eleven herbs and spices that will make even the most complex
technical topic have an element of fun, challenge, and reward.

Over the years, strategy guides, player handbooks, and player’s guides have been made for
popular games. These guides help players learn and understand the game world and the
challenges they will encounter. They provide time-saving tips and tricks and help prevent
players from getting stuck anywhere for too long. This book attempts to be that player’s guide
for the Great Game of Programming in C#.

This book skips the typical business-centric examples found in other books in favor of samples
with a little more spice. Many are game-related, and many of the hands-on challenges involve
building small games or slices of games. This makes the journey more entertaining and
exciting. While C# is an excellent language for game development, this book is not specifically
a C# game programming book. You will undoubtedly come away with ideas to try if that’s the
path you choose, but this book is focused on becoming skilled with the C# language so that
you can use it to build any type of program, not just games. (Most professional programmers
make business-centric applications, web apps, and smartphone apps.)

This book focuses on console applications. Console applications are those text-based
programs where the computer receives text input from the user and displays text responses in
the stereotypical white text on a black background window. We’ll learn some things to make
console applications more colorful and exciting, but console applications are, admittedly, not
the most exciting type of application.

Why not use something more exciting? The main reason is that regardless of whether you want
to build games, smartphone apps, web apps, or desktop apps, the starting points in those
worlds already expect you to know much about C#. For example, I just looked over the starter
code for a certain C# game development framework. It demands you already know how to use
advanced topics covered in Level 25 (inheritance), Level 26 (polymorphism), and Level 30
(generics) just to get started! While some people successfully dive in and stay afloat, it is
usually wiser to build up your swimming skills in a lap pool before trying to swim across the
raging ocean. Starting from the basics gives you a better foundation. After building this
foundation, learning how to make specific application types will go much more smoothly. Few
will be satisfied with just console applications, but spending a few weeks covering the basics
before moving on will make the learning process far easier.

BOOK FEATURES
Creating a fun and rewarding book (or at least not a dull and useless one) means adding some
features that most programming books do not have. Let’s look at a few of these so that you
know what to expect.

Speedruns
At the start of each level (chapter) is a Speedrun section that outlines the key points described
in the level. It is not a substitute for going through the whole level in detail but is helpful in a
handful of situations:

1. You’re reviewing the material and want a reminder of the key points.
2. You are skimming to see if some level has information that you will need soon.
3. You are trying to remember which level covered some particular topic.

BOOK FEATURES 3

Challenges and Boss Battles
Scattered throughout the book are hands-on challenges that give you a specific problem to
work on. These start small early in the book, but some of the later ones are quite large. Each
of these challenges is marked with the following icon:

When a challenge is especially tough, it is upgraded to a Boss Battle, shown by the icon below:

Boss Battles are sometimes split across multiple parts to allow you to work through them one
step at a time.

I strongly recommend that you do these challenges. You don’t beat a game by reading the
player’s guide. You don’t learn to program by reading a book. You will only truly learn if you
sit down and program.

I also recommend you do these challenges as you encounter them instead of reading ten
chapters and returning to them. The read a little, program a little model is far better at helping
you learn fast.

I also feel that these challenges should not be the only things you program as you learn,
especially if you are relatively new to programming. Half of your programming time should
come from these challenges and the rest from your own imagination. Working on things of
your own invention will be more exciting to you. But also, when you are in that creative
mindset, you mentally explore the programming world better. You start to think about how
you can apply the tools you have learned in new situations, rather than being told, “Go use
this tool over here in this specific way.”

As you do that, keep in mind the size of the challenges you are inventing for yourself. If you
are learning how to draw, you don’t go find millennia-old chapel ceilings to paint (or at least
you don’t expect it to turn out like the Sistine Chapel). Aim for things that push your limits a
little but aren’t intimidating. Keep in mind that everything is a bit harder than you initially
expect. And don’t be afraid to dive in and make a mess. Continuing the art analogy, you aren't
learning if you don’t have a few garbage drawings in your sketchbook. Not every line of code
you write will be a masterpiece. You have permission to write strange, ugly, and awkward
code.

If these specific challenges are not your style, then skip them. But substitute them with
something else. You will learn little if you don’t sit down and write some code.

When a challenge contains a Hint, these are suggestions or possibilities, not things you must
do. If you find a different path that works, go for it.

Some challenges also include things labeled Answer this question. I recommend writing out
your answer. (Comments, covered in Level 4, could be a good approach.) Our brains like to
tell us it understands something without proving it does. We mentally skip the proof, often to
our detriment. Writing it out ensures we know it. These questions usually only take a few
seconds to answer.

I have posted my answers to these challenges on the book’s website, described later in this
introduction. If you want a hint or compare answers, you can review what I did. Just because
our solutions are different doesn’t make yours bad or wrong. I make plenty of my own

4 LEVEL 1 INTRODUCTION

mistakes, have my own preferences for the various tools in the language, and have also been
programming in C# for a long time. As long as you have a working solution, you’re doing fine.

 Knowledge Checks
Some levels in this book focus on conceptual topics that are not well-tested by a programming
problem. In these cases, instead of a Challenge problem, these levels will have a Knowledge
Check, containing a quiz with true/false, multiple-choice, and short answer questions. The
answers are immediately below the Knowledge Check, so you can see if you learned the key
points right away. These are marked with the knowledge scroll icon below:

Experience Points and Levels
Since this book is a player’s guide, I’ve attempted to turn the learning process into a game.
Each Challenge and Knowledge Check section is marked in the top right with experience
points (written as XP, as most games do) that you earn by completing the challenge. When
you complete a challenge, you can claim the XP associated with it and add it to your total.
Towards the front of this book, after the title page and the map, is an XP Tracker. You can use
this to track your progress, check off challenges as you complete them, and mark off your
progress as you go.

You can also get extra copies of the XP Tracker on the book’s website (described below) if you
do not want to write in your book, have a digital copy, or have a used copy where somebody
else has already marked it.

As you collect XP, you will accumulate enough points to level up from Level 1 to Level 10. If
you reach Level 10, you will have completed nearly every challenge in this book and should
have an excellent grasp of C# programming.

The XP assigned to each challenge is not random. Easier challenges have fewer points; more
demanding challenges are worth more XP. While measuring difficulty is somewhat subjective,
you can generally count on spending more time on challenges with more points and will gain
a greater reward for it.

Narratives and the Plot
The challenges form a loose storyline that has you, the (soon to be) Master Programmer
journeying through a land that has been stripped of the ability to program by the malevolent,
shadowy, and amorphous Uncoded One. Using your growing C# programming skills, you will
be able to help the land’s inhabitants, fend off the Uncoded One’s onslaught, and eventually
face the Uncoded One in a final battle at the end of the book.

Even if this plot is not attractive to you, the challenges are still worth doing. Feel free to ignore
the book-long storytelling if it isn’t helpful for you.

While much of the book’s “plot” is revealed in the Challenge descriptions themselves, there
were places where it felt shoehorned. Narrative sections supplement the descriptions in the
challenges but otherwise have no purpose beyond advancing this book-long plot. These are
marked with the icon below:

BOOK FEATURES 5

If you are ignoring the plot, you can skip these sections. They do not contain information that
helps you be a better C# programmer.

Side Quests
While everything in this book is worth knowing (skilled C# programmers know all of it), some
sections are more important than others. Sections that may be skipped in your first pass
through this book are marked as Side Quests, indicated with the following icon:

These often deal with situations that are less common or less impactful. If you’re pressed for
time, these sections are better to skip than the rest. However, I recommend returning to them
later if you don’t read them the first time around.

Glossary
Programmers have a mountain of unique jargon and terminology. Beyond learning a new
programming language, understanding this jargon is a second massive challenge for new
programmers. To help you with this undertaking, I have carefully defined new concepts within
the book as they arise and collected all of these new words and concepts into a glossary at the
back of the book. Only the lucky few will remember all such words from seeing it defined once.
Use the glossary to refresh your mind on any term you don’t remember well.

The Website
This book has a website associated with it, which has a lot of supporting content: https://
csharpplayersguide.com. Some of the highlights are below:

• https://csharpplayersguide.com/solutions. Contains my solutions to all the Challenge
sections in this book. My answer is not necessarily more correct than yours, but it can give
you some thoughts on a different way to solve the problem and perhaps some hints on
how to progress if you are stuck. This also contains more thorough explanations for all of
the Knowledge Checks in the book.

• https://csharpplayersguide.com/errata. This page contains errata (errors in the book)
that have been reported to clarify what was meant. If you notice something that seems
wrong or inconsistent, you may find a correction here.

• http://csharpplayersguide.com/articles. This page contains a collection of articles that
add to this book’s content. They often cover more in-depth information beyond what I felt
is reasonable to include in this book or answer questions readers have asked me. In a few
places in this book, I call out articles with more information for the curious.

Discord
This book has an active Discord server where you can interact with me and other readers to
discuss the book, ask questions, report problems, and get feedback on your solutions to the
challenges. Go to https://csharpplayersguide.com/discord to see how to join the server.
This server is a guildhall where you can rest from your travels and discuss C# with others on a
similar journey as you.

https://csharpplayersguide.com/
https://csharpplayersguide.com/
https://csharpplayersguide.com/
https://csharpplayersguide.com/
https://csharpplayersguide.com/solutions
https://csharpplayersguide.com/errata
http://csharpplayersguide.com/articles
https://csharpplayersguide.com/discord

6 LEVEL 1 INTRODUCTION

I WANT YOUR FEEDBACK
I depend on readers like you to help me see how to make the book better. This book is much
better because past readers helped me know what parts were good and bad.

Naturally, I’d love to hear that you loved the book. But I need constructive criticism too. If there
is a challenge that was too hard, a typo you found, a section that wasn’t clear, or even that you
felt an entire level or the whole book was bad, I want to hear it. I have gone to great lengths to
make this book as good as possible, but with your help, I can make it even better for those who
follow in our footsteps. Don’t hesitate to reach out to me, whether your feedback is positive or
negative!

I have many ways that you can reach out to me. Go to https://csharpplayersguide.com/
contact to find a way that works for you.

AN OVERVIEW
Let’s take a peek at what lies ahead. This book has five major parts:

• Part 1—The Basics. This first part covers many of the fundamental elements of C#
programming. It focuses on procedural programming, including storing data, picking and
choosing which lines of code to run, and creating reusable chunks of code.

• Part 2—Object-Oriented Programming. C# uses an approach called object-oriented
programming to help you break down a large program into smaller pieces that are each
responsible for a little slice of the whole program. These tools are essential as you begin
building bigger programs.

• Part 3—Advanced Topics. While Parts 1 and 2 deal with the most critical elements of the
C# language, there are various other language features that are worth knowing. This part
consists of mostly independent topics. You can jump around and learn the ones you feel
are most important to you (or skip them all entirely, for a while). In some ways, you could
consider all of Part 3 to be a big Side Quest, though you will be missing out on some cool
C# features if you skip it all.

• Part 4—The Endgame. While hands-on challenges are scattered throughout the book,
Part 4 consists of a single, extensive, final program that will test the knowledge and skills
that you have learned. It will also wrap up the book, pointing you toward Lands Uncharted
and where you might go after finishing this book.

• Part 5—Bonus Levels. The end of the book contains a few bonus levels that guide you on
what to do when you don’t know what else to do—dealing with compiler errors and
debugging your code. The glossary and index are also back here at the end of the book.

Please do not feel like you must read this book cover to cover to get value from it.

If you are new to programming, I recommend a slow, careful pace through Parts 1 and 2,
skipping the Side Quests and only advancing when you feel comfortable taking the next step.
After Part 2, you might continue your course through the advanced features of Part 3, or you
might also choose to skim it to get a flavor for what else C# offers without going into depth.
Even if you skim or skip Part 3, you can still attempt the Final Battle in Part 4. If you’re making
consistent progress and getting good practice, it doesn’t matter if your progress feels slow.

If you are an experienced programmer, you will likely be able to race through Part 1, slow down
only a little in Part 2 as you learn how C# does object-oriented programming, and then spend
most of your time in Part 3, learning the things that make C# unique.

Adapt the journey however you see fit. It is your book and your adventure!

https://csharpplayersguide.com/contact
https://csharpplayersguide.com/contact
https://csharpplayersguide.com/contact

Part 1
The Basics

The world of C# programming lies in front of you, waiting to be explored. In Part 1, we begin our
adventure and learn the basics of programming in C#:

• Learn what C# and .NET are (Level 1).
• Install tools to allow us to program in C# (Level 2).
• Write our first few programs and learn the basic ingredients of a C# program (Level 3).
• Annotate your code with comments (Level 4).
• Store data in variables (Level 5).
• Understand the type system (Levels 6).
• Do basic math (Level 7).
• Get input from the user (Level 8).
• Make decisions (Levels 9 and 10).
• Run code more than once in loops (Level 11).
• Make arrays, which contain multiple pieces of data (Level 12).
• Make methods, which are named, packaged, reusable bits of code (Level 13).
• Understand how memory is used in C# (Level 14).

LEVEL 1
 THE C# PROGRAMMING LANGUAGE

 Speedrun
• C# is a general-purpose programming language. You can make almost anything with it.
• C# runs on .NET, which is many things: a runtime that supports your program, a library of code to

build upon, and a set of tools to aid in constructing programs.

Computers are amazing machines, capable of running billions of instructions every second.
Yet computers have no innate intelligence and do not know which instructions will solve a
problem. The people who can harness these powerful machines to solve meaningful
problems are the wizards of the computing world we call programmers.

Humans and computers do not speak the same language. Human language is imprecise and
open to interpretation. The binary instructions computers use, formed from 1’s and 0’s, are
precise but very difficult for humans to use. Programming languages bridge the two—precise
enough for a computer to run but clear enough for a human to understand.

WHAT IS C#?
There are many programming languages out there, but C# is one of the few that is both widely
used and very loved. Let’s talk about some of its key features.

C# is a general-purpose programming language. Some languages solve only a specific type of
problem. C# is designed to solve virtually any problem equally well. You can use it to make
games, desktop programs, web applications, smartphone apps, and more. However, C# is at
its best when building applications (of any sort) with it. You probably wouldn’t write a new
operating system or device driver with it (though both have been done).

C# strikes a balance between power and ease of use. Some languages give the programmer
more control than C#, but with more ways to go wrong. Other languages do more to ensure
bad things can’t happen by removing some of your power. C# tries to give you both power and
ease of use and often manages to do both but always strikes a balance between the two when
needed.

10 LEVEL 1 THE C# PROGRAMMING LANGUAGE

C# is a living language. It changes over time to adapt to a changing programming world.
Programming has changed significantly in the 20 years since it was created. C# has evolved
and adapted over time. At the time of publishing, C# is on version 10.0, with new major
updates every year or two.

C# is in the same family of languages as C, C++, and Java, meaning that C# will be easier to
pick up if you know any of those. After learning C#, learning any of those will also be easier.
This book sometimes points out the differences between C# and these other languages for
readers who may know them.

C# is a cross-platform language. It can run on every major operating system, including
Windows, Linux, macOS, iOS, and Android.

This next paragraph is for veteran programmers; don’t worry if none of this makes sense.
(Most will make sense after this book.) C# is a statically typed, garbage collected, object-
oriented programming language with imperative, functional, and event-driven aspects. It also
allows for dynamic typing and unmanaged code in small doses when needed.

WHAT IS .NET?
C# is built upon a thing called .NET (pronounced “dot net”). .NET is often called a framework
or platform, but .NET is the entire ecosystem surrounding C# programs and the programmers
that use it. For example, .NET includes a runtime, which is the environment your C# program
runs within. Figuratively speaking, it is like the air your program breathes and the ground it
stands on as it runs. Every programming language has a runtime of one kind or another, but
the .NET runtime is extraordinarily capable, taking a lot of burden off of you, the programmer.

.NET also includes a pile of code that you can use in your program directly. This collection is
called the Base Class Library (BCL). You can think of this like mission control supporting a
rocket launch: a thousand people who each know their specific job well, ready to jump in and
support the primary mission (your code) the moment they are needed. For example, you
won’t have to write your own code to open files or compute a square root because the Base
Class Library can do this for you.

.NET includes a broad set of tools called a Software Development Kit (SDK) that makes
programming life easier.

.NET also includes things to help you build specific kinds of programs like web, mobile, and
desktop applications.

.NET is an ecosystem shared by other programming languages. Aside from C#, the three other
most popular languages are Visual Basic, F#, and PowerShell. You could write code in C# and
use it in a Visual Basic program. These languages have many similarities because of their
shared ecosystem, and I’ll point these out in some cases.

Knowledge Check C# 25 XP
Check your knowledge with the following questions:

1. True/False. C# is a special-purpose language optimized for making web applications.
2. What is the name of the framework that C# runs on?

Answers: (1) False. (2) .NET

LEVEL 2
GETTING AN IDE

 Speedrun
• Programming is complex; you want an IDE to make programming life easier.
• Visual Studio is the most used IDE for C# programming. Visual Studio Community is free, feature-

rich, and recommended for beginners.
• Other C# IDEs exist, including Visual Studio Code and Rider.

Modern-day programming is complex and challenging, but a programmer does not have to
go alone. Programmers work with an extensive collection of tools to help them get their job
done. An integrated development environment (IDE) is a program that combines these tools
into a single application designed to streamline the programming process. An IDE does for
programming what Microsoft Word does for word processing or Adobe Photoshop for image
editing. Most programmers will use an IDE as they work.

There are several C# IDEs to choose from. (Or you can go without one and use the raw tools
directly; I don’t recommend that for new programmers.) We will look at the most popular C#
IDEs and discuss their strengths and weaknesses in this level.

We’ll use an IDE to program in C#. Unfortunately, every IDE is different, and this book cannot
cover them all. While this book focuses on the C# language and not a specific IDE, when
necessary, this book will illustrate certain tasks using Visual Studio Community Edition. Feel
free to use a different IDE. The C# language itself is the same regardless of which IDE you pick,
but you may find slight differences when performing a task in the IDE. Usually, the process is
intuitive, and if tinkering fails, Google usually knows.

A COMPARISON OF IDES
There are several notable IDEs that you can choose from.

12 LEVEL 2 GETTING AN IDE

Visual Studio
Microsoft Visual Studio is the stalwart, tried-and-true IDE used by most C# developers. Visual
Studio is older than even C#, though it has grown up a lot since those days.

Of the IDEs we discuss here, this is the most feature-rich and capable, though it has one
significant drawback: it works on Windows but not Mac or Linux.

Visual Studio comes in three different “editions” or levels: Community, Professional, and
Enterprise. The Community and Professional editions have the same feature set, while
Enterprise has an expanded set with some nice bells and whistles at extra cost.

The difference between the Community Edition and the Professional Edition is only in the
cost and the license. Visual Studio Community Edition is free but is meant for students,
hobbyists, open-source projects, and individuals, even for commercial use. Large companies
do not fit into this category and must buy Professional. If you have more than 250 computers,
make more than $1 million annually, or have more than five Visual Studio users, you’ll need
to pay for Professional. But that’s almost certainly not you right now.

Visual Studio Community edition is my recommendation for new C# programmers running
on Windows and is what this book uses throughout.

Visual Studio Code
Microsoft Visual Studio Code is a lightweight editor (not a fully-featured IDE) that works on
Windows, Mac, and Linux. Visual Studio Code is free and has a vibrant community. It does
not have the same expansive feature set as Visual Studio, and in some places, the limited
feature set is harsh; you sometimes have to run commands on the command line. If you are
used to command-line interfaces, this cost is low. But if you’re new to programming, it may
feel alien. Visual Studio Code is probably your best bet if Visual Studio isn’t an option for you
(Linux and Mac, for example), especially if you have experience using the command line.

Visual Studio Code can also run online (vscode.dev), but as of right now, you can’t run your
code. (Except by purchasing a codespace via github.com.) Perhaps this limitation will be fixed
someday soon.

Visual Studio for Mac
Visual Studio for Mac is a separate IDE for C# programming that works on Mac. While it shares
its name with Visual Studio, it is a different product with many notable differences. Like Visual
Studio (for Windows), this has Community, Professional, and Enterprise editions. If you are
on a Mac, this IDE is worth considering.

JetBrains Rider
The only non-Microsoft IDE on this list is the Rider IDE from JetBrains. Rider is comparatively
new, but JetBrains is very experienced at making IDEs for other languages. Rider does not
have a free tier; the cheapest option is about $140 per year. But it is both feature-rich and cross-
platform. If you have the money to spend, this is a good choice on any operating system.

Other IDEs
There are other IDEs out there, but most C# programmers use one of the above. Other IDEs
tend to be missing lots of features, aren’t well supported, and have less online help and
documentation. But if you find another IDE that you enjoy, go for it.

https://vscode.dev/
https://github.com/

INSTALLING VISUAL STUDIO 13

Online Editors
There are a handful of online C# editors that you can use to tinker with C# without
downloading tools. These have certain limitations and often do not keep up with the current
language version. Still, you may find these useful if you just want to experiment without a huge
commitment. An article on the book’s website (csharpplayersguide.com/articles/online-
editors) points out some of these.

No IDE
You do not need an IDE to program in C#. If you are a veteran programmer, skilled at using
the command line, and accustomed to patching together different editors and scripts, you can
skip the IDE. I do not recommend this approach for new programmers. It is a bit like building
your car from parts before you can drive it. For the seasoned mechanic, this may be part of the
enjoyment. Everybody else needs something that they can hop in and go. The IDEs above are
in that category. Working without an IDE requires using the dotnet command-line tool to
create, compile, test, and package your programs. Even if you use an IDE, you may still find
the dotnet tool helpful. (If you use Visual Studio Code, you will need to use it occasionally.)
But if you are new to programming, start with an IDE and learn the basics first.

INSTALLING VISUAL STUDIO
This book’s focus is the C# language itself, but when I need to illustrate a task in an IDE, this
book uses Visual Studio Community Edition. The Professional and Enterprise Editions should
be identical. Other IDEs are usually similar, but you will find differences.

Visual Studio Code is popular enough that I posted an article on the book’s website illustrating
how to get started with it: https://csharpplayersguide.com/articles/visual-studio-code.

You can download Visual Studio Community Edition from https://visualstudio.microsoft.
com/downloads. You will want to download Visual Studio 2022 or newer to use all of the
features in this book.

Note that this will download the Visual Studio Installer rather than Visual Studio itself. The
Visual Studio Installer lets you customize which components Visual Studio has installed.
Anytime you want to tweak the available features, you will rerun the installer and make the
desired changes.

As you begin installing Visual Studio, it will ask you which components to include:

https://csharpplayersguide.com/articles/online-editors
https://csharpplayersguide.com/articles/online-editors
https://csharpplayersguide.com/articles/visual-studio-code
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

14 LEVEL 2 GETTING AN IDE

With everything installed, Visual Studio is a lumbering, all-powerful behemoth. You do not
need all possible features of Visual Studio. In fact, for this book, we will only need a small slice
of what Visual Studio offers.

You can install anything you find interesting, but there is only one item you must install for the
code in this book. On the Workloads tab, find the one called .NET desktop development and
click on it to enable it. If you forget to do this, you can always re-run the Visual Studio Installer
and change what components you have installed.

Warning! Be sure you get the right workload installed. If you don’t, you won’t be able to
use all of the C# features described in this book.

Once Visual Studio is installed, open it. You may end up with a desktop icon, but you can
always find it in the Windows Start Menu under Visual Studio 2022.

Visual Studio will ask you to sign in with a Microsoft account, even for the free Community
Edition. You don’t need to sign in if you don’t want to, but it does enable a few minor features
like synchronizing your settings across multiple devices.

If you are installing Visual Studio for the first time, you will also get a chance to pick
development settings—keyboard shortcuts and a color theme. I have used the light theme in
this book because it looks clearer in print. Many developers like the dark theme. Whatever you
pick can be changed later.

You know you are done when you make it to the launch screen shown below:

Challenge Install Visual Studio 75 XP
As your journey begins, you must get your tools ready to start programming in C#. Install Visual Studio
2022 Community edition (or another IDE) and get it ready to start programming.

LEVEL 3
HELLO WORLD: YOUR FIRST PROGRAM

 Speedrun
• New projects usually begin life by being generated from a template.
• A C# program starts running in the program’s entry point or main method.
• A full Hello World program looks like this: Console.WriteLine("Hello, World!");
• Statements are single commands for the computer to perform. They run one after the next.
• Expressions allow you to define a value that is computed as the program runs from other elements.
• Variables let you store data for use later.
• Console.ReadLine() retrieves a full line of text that a user types from the console window.

Our adventure begins in earnest in this level, as we make our first real programs in C# and
learn the basics of the language. We’ll start with a simple program called Hello World, the
classic first program to write in any new language. It is the smallest meaningful program we
could make. It gives us a glimpse of what the language looks like and verifies that our IDE is
installed and working. Hello World is the traditional first program to make, and beginning
anywhere else would make the programming gods mad. We don’t want that!

CREATING A NEW PROJECT
A C# project is a combination of two things. The first is your C# source code—instructions you
write in C# for the computer to run. The second is configuration—instructions you give to the
computer to help it know how to compile or translate C# code into the binary instructions the
computer can run. Both of these live in simple text files on your computer. C# source code files
use the .cs extension. A project’s configuration uses the .csproj extension. Because these are
both simple text files, we could handcraft them ourselves if needed.

But most C# programs are started by being generated from one of several templates. Templates
are standard starting points; they help you get the configuration right for specific project types
and give you some starting code. We will use a template to create our projects.

16 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

You may be tempted to skip over this section, assuming you can just figure it out. Don’t! There
are several pitfalls here, so don’t skip this section.

Start Visual Studio so that you can see the launch screen below:

Click on the Create a new project button on the bottom right. Doing this advances you to the
Create a new project page:

There are many templates to choose from, and your list might not exactly match what you see
above. Choose the C# template called Console Application.

Warning! You want the C# project called Console Application. Ensure you aren’t getting
the Visual Basic one (check the tags below the description). Also, make sure you aren’t
getting the Console Application (.NET Framework) one, which is an older template. If you
don’t see this template, re-run the installer and add the right workload.

We will always use this Console Application template in this book, but you will use other
templates as you progress in the C# world.

After choosing the C# Console Application template, press the Next button to advance to a
page that lets you enter your new program’s details:

A BRIEF TOUR OF VISUAL STUDIO 17

Always give projects a good name. You won’t remember what ConsoleApp12 did in two weeks.

For the location, pick a spot that you can find later on. (The default location is fine, but it isn’t
a prominent spot, so note where it is.)

There is also a checkbox for Place solution and project in the same directory. For small
projects, I recommend checking this box. Larger programs (solutions) may be formed from
many projects. For those, putting projects in their own directory (folder) under a solution
directory makes sense. But for small programs with a single project, it is simpler just to put
everything in a single folder.

Press the Next button to choose your target framework on the final page:

Make sure you pick .NET 6.0 for this book! We will be using many .NET 6 features. You can
change it after creation, but it is much easier to get it right in the first place.

Once you have chosen the framework, push the Create button to create the project.

Warning! Make sure you pick .NET 6.0 (or newer), so you can take advantage of all of the
C# features covered in this book.

A BRIEF TOUR OF VISUAL STUDIO
With a new project created, we get our first glimpse at the Visual Studio window:

18 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

Visual Studio is extremely capable, so there is much to explore. This book focuses on
programming in C#, not becoming a Visual Studio expert. We won’t get into every detail of
Visual Studio, but we’ll cover some essential elements here and throughout the book.

Right now, there are three things you need to know to get started. First, the big text editor on
the left side is the Code Window or the Code Editor. You will spend most of your time working
here.

Second, on the right side is the Solution Explorer. That shows you a high-level view of your
code and the configuration needed to turn it into working code. You will spend only a little
time here initially, but you will use this more as you begin to make larger programs.

Third, we will run our programs using the part of the Standard Toolbar shown below:

Bonus Level A covers Visual Studio in more depth. You can read that level and the other bonus
levels whenever you are ready for it. Even though they are at the end of the book, they don’t
require knowing everything else before them. If you’re new to Visual Studio, consider reading
Bonus Level A before too long. It will give you a better feel for Visual Studio.

Time for a sanity check. If you don’t see code in the Code Window, double click on
Program.cs in the Solution Explorer. Inspect the code you see in the Code Window. If you see
class Program or static void Main, or if the file has more than a couple of lines of
text, you may have chosen the wrong template. Go back and ensure you pick the correct
template. If the right template isn’t there, re-run the installer to add the right workload.

COMPILING AND RUNNING YOUR PROGRAM
Generating a new project from the template has produced a complete program. Before we
start dissecting it, let’s run it.

The computer’s circuitry cannot run C# code itself. It only runs low-level binary instructions
formed out of 1’s and 0’s. So before the computer can run our program, we must transform it
into something it can run. This transformation is called compiling, done by a special program
called a compiler. The compiler takes your C# code and your project’s configuration and
produces the final binary instructions that the computer can run directly. The result is either
a .exe or .dll file, which the computer can run. (This is an oversimplification, but it’s accurate
enough for now.)

SYNTAX AND STRUCTURE 19

Visual Studio makes it easy to compile and then immediately run your program with any of
the following: (a) choose Debug > Start Debugging from the main menu, (b) press F5, or (c)
push the green start button on the toolbar, shown below:

When you run your program, you will see a black and white console window appear:

Look at the first line:

Hello, World!

That’s what our program was supposed to do! (The rest of the text just tells you that the
program has ended and gives you instructions on how not to show it in the future. You can
ignore that text for now.)

Challenge Hello, World! 50 XP
You open your eyes and find yourself face down on the beach of a large island, the waves crashing on the
shore not far off. A voice nearby calls out, “Hey, you! You’re finally awake!” You sit up and look around.
Somehow, opening your IDE has pulled you into the Realms of C#, a strange and mysterious land where
it appears that you can use C# programming to solve problems. The man comes closer, examining you.
“Are you okay? Can you speak?” Creating and running a “Hello, World!” program seems like a good way
to respond.

Objectives:

• Create a new Hello World program from the C# Console Application template, targeting .NET 6.
• Run your program using any of the three methods described above.

SYNTAX AND STRUCTURE
Now that we’ve made and run our first C# program, it is time to look at the fundamental
elements of all C# programs. We will touch on many topics in this section, but each is covered
in more depth later in this book. You don’t need to master it all here.

Every programming language has its own distinct structure—its own set of rules that describe
how to make a working program in that language. This set of rules is called the language’s
syntax.

Look in your Code Editor window to find the text shown below:

Console.WriteLine("Hello, World!");

20 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

You might also see a line with green text that starts with two slashes (//). That is a comment.
We’ll talk about comments in Level 4, but you can ignore or even delete that line for now.

We’re going to analyze this one-line program in depth. As short as it is, it reveals a great deal
about how C# programming works.

Strings and Literals
First, the "Hello, World!" part is the displayed text. You can imagine changing this text to
get the program to show something else instead.

In the programming world, we often use the word string to refer to text for reasons we’ll see
later. There are many ways we can work with strings or text, but this is the simplest. This is
called a literal, or specifically, a string literal. A literal is a chunk of code that defines some
specific value, precisely as written. Any text in double quotes will be a string literal. The quote
marks aren’t part of the text. They just indicate where the string literal begins and ends. Later
on, we’ll see how to make other types of literals, such as number literals.

Identifiers
The two other big things in our code are Console and WriteLine. These are known formally
as identifiers or, more casually, as names. An identifier allows you to refer to some existing
code element. As we build code elements of our own, we will pick names for them as well, so
we can refer back to them. Console and WriteLine both refer to existing code elements.

Hierarchical Organization
Between Console and WriteLine, there is a period (.) character. This is called the member
access operator or the dot operator. Code elements like Console and WriteLine are
organized hierarchically. Some code elements live inside of other code elements. They are
said to be members or children of their container. The dot operator allows us to dig down in
the hierarchy, from the big parts to their children.

In this book, I will sometimes illustrate this hierarchical organization using a diagram like the
one shown below:

I’ll refer to this type of diagram as a code map in this book. Some versions of Visual Studio can
generate similar drawings, but I usually sketch them by hand if I need one.

These code maps can help us see the broad structure of a program, which is valuable. Equally
important is that a code map can help us understand when a specific identifier can be used.
The compiler must determine which code element an identifier refers to. This process is called
name binding. But don’t let that name scare you. It really is as simple as, “When the code says,
WriteLine, what exactly is that referring to?”

Only a handful of elements are globally available. We can start with Console, but we can’t
just use WriteLine on its own. The identifier WriteLine is only available in the context of
its container, Console.

SYNTAX AND STRUCTURE 21

Classes and Methods
You may have noticed that I used a different icon for Console and WriteLine in the code
map above. Named code elements come in many different flavors. Specifically, Console is a
class, while WriteLine is a method. C# has rules that govern what can live inside other things.
For example, a class can have methods as members, but a method cannot have a class as a
member.

We’ll talk about both methods and classes at great length in this book, but let’s start with some
basic definitions to get us started.

For now, think of classes as entities that solve a single problem or perform a specific job or
role. It is like a person on a team. The entire workload is spread across many people, and each
one performs their job and works with others to achieve the overarching goal. The Console
class’s job is to interact with the console window. It does that well, but don’t ask it to do
anything else—it only knows how to work with the console window.

Classes are primarily composed of two things: (1) the data they need to do their job and (2)
tasks they can perform. These tasks come in the form of methods, and WriteLine is an
example. A method is a named, reusable block of code that you can request to run.
WriteLine’s task is to take text and display it in the console window on its own line.

The act of asking a method to run is called method invocation or a method call. These method
calls or invocations are performed by using a set of parentheses after the method name, which
is why our one line of code contains WriteLine(...).

Some methods require data to perform their task. WriteLine works that way. It needs to
know what text to display. This data is supplied to the method call by placing it inside the
parentheses, as we have seen with WriteLine("Hello, World!"). Some methods don’t
need any extra information, while others need multiple pieces of information. We will see
examples of those soon. Some methods can also return information when they finish,
allowing data to flow to and from a method call. We’ll soon see examples of that as well.

Namespaces
All methods live in containers like a class, but even most classes live in other containers called
namespaces. Namespaces are purely code organization tools, but they are valuable when
dealing with hundreds or thousands of classes. The Console class lives in a namespace called
System. If we add this to our code map, it looks like this:

In code, we could have referred to Console through its namespace name. The following code
is functionally identical to our earlier code:

System.Console.WriteLine("Hello, World!");

Using C# 10 features and the project template we chose, we can skip the System. In older
versions of C#, we would have somehow needed to account for System. One way to account

22 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

for it was shown above. A second way is with a special line called a using directive. If you
stumble into older C# code online or elsewhere, you may notice that most old C# code files
start with a pile of lines that look like this:

using System;

These lines tell the compiler, “If you come across an identifier, look in this namespace for it.”
It allows you to use a class name without sticking the namespace name in front of it. But with
C# 10, the compiler will automatically search System and a handful of other extremely
common namespaces without you needing to call it out.

For the short term, we can almost ignore namespaces entirely. (We’ll cover them in more
depth in Level 33.) But namespaces are an important element of the code structure, so even
though it will be a while before we need to deal with namespaces directly, I’m still going to
call out which namespaces things live in as we encounter them. (Most of it will be the System
namespace.)

The Base Class Library
Our code map is far from complete. System, Console, and WriteLine are only a tiny slice
of the entire collection of code called the Base Class Library (BCL). The Base Class Library
contains many namespaces, each with many classes, each with many members. The code
map below fleshes this out a bit more:

It is huge! If we drew the complete diagram, it might be longer than this whole book!

The Base Class Library provides every C# program with a set of fundamental building blocks.
We won’t cover every single method or class in the Base Class Library, but we will cover its
most essential parts throughout this book (starting with Console).

Program and Main
The code we write also adds new code elements. Even our simple Hello World program adds
new code elements that we could show in a code map:

SYNTAX AND STRUCTURE 23

The compiler takes the code we write, places it inside a method called Main, and then puts
that inside a class called Program, even though we don’t see those names in our code. This
is a slight simplification; the compiler uses a name you can’t refer to (<Main>$), but we’ll use
the simpler name Main for now.

In the code map above, the icon for Main also has a little black arrow to indicate that Main is
the program’s entry point. The entry point or main method is the code that will automatically
run when the computer runs your program. Other methods won’t run unless the main
method calls them, as our Hello World program does with WriteLine.

In the early days of C#, you had to write out code to define both Program and Main. You rarely
need to do so now, but you can if you want (Level 33).

Statements
We have accounted for every character in our Hello World program except the semicolon (;)
at the end. The entire Console.WriteLine("Hello, World!"); line is called a
statement. A statement is a single step or command for the computer to run. Most C#
statements end with a semicolon.

This particular statement instructs the computer to ask the Console class to run its
WriteLine method, giving it the text "Hello, World!" as extra information. This “ask a
thing to do a thing” style of statement is common, but it is not the only kind. We will see others
as we go.

Statements don’t have names, so we won’t put them in a code map.

Statements are an essential building block of C# programs. You instruct the computer to
perform a sequence of statements one after the next. Most programs have many statements,
which are executed from top to bottom and left to right (though C# programmers rarely put
more than one statement on a single line).

One thing that may surprise new programmers is how specific you need to be when giving the
computer statements to run. Most humans can be given vague instructions and make
judgment calls to fill in the gaps. Computers have no such capacity. They do exactly what they
are told without variation. If it does something unexpected, it isn’t that the computer made a
mistake. It means what you thought you commanded and what you actually commanded were
not the same. As a new programmer, it is easy to think, “The computer isn’t doing what I told
it!” Instead, try to train your mind to think, “Why did the computer do that instead of what I
expected?” You will be a better programmer with that mindset.

Whitespace
C# ignores whitespace (spaces, tabs, newlines) as long as it can tell where one thing ends and
the next begins. We could have written the above line like this, and the compiler wouldn’t care:

 Console . WriteLine
("Hello, World!"
)
;

But which is easier for you to read? This is a critical point about writing code: You will spend
more time reading code than writing it. Do yourself a favor and go out of your way to make
code easy to understand, regardless of what the compiler will tolerate.

24 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

Challenge What Comes Next 50 XP
The man seems surprised that you’ve produced a working “Hello, World!” program. “Been a while since I
saw somebody program like that around here. Do you know what you’re doing with that? Can you make
it do something besides just say ‘hello’?”

Build on your original Hello World program with the following:

Objectives:

• Change your program to say something besides “Hello, World!”

BEYOND HELLO WORLD
With an understanding of the basics behind us, let’s explore a few other essential features of
C# and make a few more complex programs.

Multiple Statements
A C# program runs one statement at a time in the order they appear in the file. Putting multiple
statements into your program makes it do multiple things. The following code displays three
lines of text:

Console.WriteLine("Hi there!");
Console.WriteLine("My name is Dug.");
Console.WriteLine("I have just met you and I love you.");

Each line asks the Console class to perform its WriteLine method with different data. Once
all statements in the program have been completed, the program ends.

Challenge The Makings of a Programmer 50 XP
The man, who tells you his name is Ritlin, asks you to follow him over to a few of his friends, fishing on
the dock. “This one here has the makings of a Programmer!” Ritlin says. The group looks at you with eyes
widening and mouths agape. Ritlin turns back to you and continues, “I haven’t seen nor heard tell of
anybody who can wield that power in a million clock cycles of the CPU. Nobody has been able to do that
since the Uncoded One showed up in these lands.” He describes the shadowy and mysterious Uncoded
One, an evil power that rots programs and perhaps even the world itself. The Uncoded One’s presence
has prevented anybody from wielding the power of programming, the only thing that might be able to
stop it. Yet somehow, you have been able to grab hold of this power anyway. Ritlin’s companions suddenly
seem doubtful. “Can you show them what you showed me? Use some of that Programming of yours to
make a program? Maybe something with more than one statement in it?”

Objectives:

• Make a program with 5 Console.WriteLine statements in it.
• Answer this question: How many statements do you think a program can contain?

Expressions
Our next building block is an expression. Expressions are bits of code that your program must
process or evaluate to determine their value. We use the same word in the math world to refer

BEYOND HELLO WORLD 25

to something like 3 + 4 or -2 × 4.5. Expressions describe how to produce a value from smaller
elements. The computer can use an expression to compute a value as it runs.

C# programs use expressions heavily. Anywhere a value is needed, an expression can be put
in its place. While we could do this:

Console.WriteLine("Hi User");

We can also use an expression instead:

Console.WriteLine("Hi " + "User");

The code "Hi " + "User" is an expression rather than a single value. As your program
runs, it will evaluate the expression to determine its value. This code shows that you can use
+ between two bits of text to produce the combined text ("Hi User").

The + symbol is one of many tools that can be used to build expressions. We will learn more
as we go.

Expressions are powerful because they can be assembled out of other, smaller expressions.
You can think of a single value like "Hi User" as the simplest type of expression. But if we
wanted, we could split "User" into "Us" + "er" or even into "U" + "s" + "e" + "r".
That isn’t very practical, but it does illustrate how you can build expressions out of smaller
expressions. Simpler expressions are better than complicated ones that do the same job, but
you have lots of flexibility when you need it.

Every expression, once evaluated, will result in a single new value. That single value can be
used in other expressions or other parts of your code.

Variables
Variables are containers for data. They are called variables because their contents can change
or vary as the program runs. Variables allow us to store data for later use.

Before using a variable, we must indicate that we need one. This is called declaring the
variable. In doing so, we must provide a name for the variable and indicate its type. Once a
variable exists, we can place data in the variable to use later. Doing so is called assignment, or
assigning a value to the variable. Once we have done that, we can use the variable in
expressions later. All of this is shown below:

string name;
name = "User";
Console.WriteLine("Hi " + name);

The first line declares the variable with a type and a name. Its type is string (the fancy
programmer word for text), and its name is name. This line ensures we have a place to store
text that we can refer to with the identifier name.

The second line assigns it a value of "User".

We use the variable in an expression on the final line. As your program runs, it will evaluate
the expression "Hi " + name by retrieving the current value in the name variable, then
combining it with the value of "Hi ". We’ll see plenty more examples of expressions and
variables soon.

Anything with a name can be visualized on a code map, and this name variable is no
exception. The following code map shows this variable inside of Main, using a box icon:

26 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

In Level 9, we’ll see why it can be helpful to visualize where variables fit on the code map.

You may notice that when you type string in your editor, it changes to a different color
(usually blue). That is because string is a keyword. A keyword is a word with special
meaning in a programming language. C# has over 100 keywords! We’ll discuss them all as we
go.

Reading Text from the Console
Some methods produce a result as a part of the job they were designed to do. This result can
be stored in a variable or used in an expression. For example, Console has a ReadLine
method that retrieves text that a person types until they hit the Enter key. It is used like so:

Console.ReadLine()

ReadLine does not require any information to do its job, so the parentheses are empty. But
the text it sends back can be stored in a variable or used in an expression:

string name;
Console.WriteLine("What is your name?");
name = Console.ReadLine();
Console.WriteLine("Hi " + name);

This code no longer displays the same text every time. It waits for the user to type in their name
and then greets them by name.

When a method produces a value, programmers say it returns the value. So you might say that
Console.ReadLine() returns the text the user typed.

Challenge Consolas and Telim 50 XP
These lands have not seen Programming in a long time due to the blight of the Uncoded One. Even old
programs are now crumbling to bits. Your skills with Programming are only fledgling now, but you can
still make a difference in these people’s lives. Maybe someday soon, your skills will have grown strong
enough to take on the Uncoded One directly. But for now, you decide to do what you can to help.

In the nearby city of Consolas, food is running short. Telim has a magic oven that can produce bread from
thin air. He is willing to share, but Telim is an Excelian, and Excelians love paperwork; they demand it for
all transactions—no exceptions. Telim will share his bread with the city if you can build a program that
lets him enter the names of those receiving it. A sample run of this program looks like this:

Bread is ready.
Who is the bread for?
RB
Noted: RB got bread.

Objectives:

COMPILER ERRORS, DEBUGGERS, AND CONFIGURATIONS 27

• Make a program that runs as shown above, including taking a name from the user.

COMPILER ERRORS, DEBUGGERS, AND CONFIGURATIONS
There are a few loose ends that we should tie up before we move on: compiler errors,
debugging, and build configurations. These are more about how programmers construct C#
programs than the language itself.

Compiler Errors and Warnings
As you write C# programs, you will sometimes accidentally write code that the compiler
cannot figure out. The compiler will not be able to transform your code into something the
computer can understand.

When this happens, you will see two things. When you try to run your program, you will see
the Error List window appear, listing problems that the compiler sees. Double-clicking on an
error takes you to the problematic line. You will also see broken code underlined with a red
squiggly line. You may even see this appear as you type.

Sometimes, the problem and its solution are apparent. Other times, it may not be so obvious.
Bonus Level B provides suggestions for what to do when you cannot get your program to
compile. As with all of the bonus levels, feel free to jump over and do it whenever you have an
interest or need. You do not need to wait until you have completed all the levels before it.

If you’re watching your code closely, you might have already seen the compiler error’s less-
scary cousin: the compiler warning. A compiler warning means the compiler can make the
code work, but it thinks it is suspicious. For example, when we do something like string
name = Console.ReadLine();, you may have noticed that you get a warning that states,
“Converting null literal or possible null value to a non-nullable type.” That code even has a
green squiggly mark under it to highlight the potential problem.

This particular warning is trying to tell you that ReadLine may not give you any response
back (a lack of value called null, which is distinct from text containing no characters). We’ll
learn how to deal with these missing values in Level 22. For now, you can ignore this particular
compiler warning; we won’t be doing anything that would cause it to happen.

Debugging
Writing code that the compiler can understand is only the first step. It also needs to do what
you expected it to do. Trying to figure out why a program does not do what you expected and
then adjusting it is called debugging. It is a skill that takes practice, but Bonus Level C will show
you the tools you can use in Visual Studio to make this task less intimidating. Like the other
bonus levels, jump over and read this whenever you have an interest or a need.

Build Configurations
The compiler uses your source code and configuration data to produce software the computer
can run. In the C# world, configuration data is organized into different build configurations.
Each configuration provides different information to the compiler about how to build things.
There are two configurations defined by default, and you rarely need more. Those
configurations are the Debug configuration and the Release configuration. The two are mostly
the same. The main difference is that the Release configuration has optimizations turned on,

28 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

which allow the compiler to make certain adjustments so that your code can run faster
without changing what it does. For example, if you declare a variable and never use it,
optimized code will strip it out. Unoptimized code will leave it in. The Debug configuration
has this turned off. When debugging your code, these optimizations can make it harder to
hunt down problems. As you are building your program, it is usually better to run with the
Debug configuration. When you’re ready to share your program with others, you compile it
with the Release configuration instead.

You can choose which configuration you’re using by picking it from the toolbar’s dropdown
list, near where the green arrow button is to start your program.

LEVEL 4
COMMENTS

 Speedrun
• Comments let you put text in a program that the computer ignores. They can provide information

to help programmers understand or remember what the code does.
• Anything after two slashes (//) on a line is a comment, as is anything between /* and */.

Comments are bits of text placed in your program, meant to be annotations on the code for
humans—you and other programmers. The compiler ignores comments.

Comments have a variety of uses:

• You can add a description about how some tricky piece of code works, so you don’t have
to try to reverse engineer it later.

• You can leave reminders in your code of things you still need to do. These are sometimes
called TODO comments.

• You can add documentation about how some specific thing should be used or works.
Documentation comments like this can be handy because somebody (even yourself) can
look at a piece of code and know how it works without needing to study every line of code.

• They are sometimes used to remove code from the compiler’s view temporarily. For
example, suppose some code is not working. You can temporarily turn the code into a
comment until you’re ready to bring it back in. This should only be temporary! Don’t
leave large chunks of commented-out code hanging around.

There are three ways to add a comment, though we will only discuss two of them here and
save the third for later.

You can start a comment anywhere within your code by placing two forward slashes (//).
After these two slashes, everything on the line will become a comment, which the compiler
will pretend doesn’t exist. For example:

// This is a comment where I can describe what happens next.
Console.WriteLine("Hello, World!");

Console.WriteLine("Hello again!"); // This is also a comment.

30 LEVEL 4 COMMENTS

Some programmers have strong preferences for each of those two placements. My general
rule is to put important comments above the code and use the second placement (on the same
line) only for side notes about that line of code.

You can also make a comment by putting it between a /* and */:

Console.WriteLine("Hi!"); /* This is a comment that ends here... */

You can use this to make both multi-line comments and embedded comments:

/* This is a multi-line comment.
 It spans multiple lines.
 Isn't it neat? */

Console.WriteLine("Hi " /* Here comes the good part! */ + name);

That second example is awkward but has its uses, such as when commenting out code that
you want to ignore temporarily).

Of course, you can make multi-line comments with double-slash comments; you just have to
put the slashes on every line. Many C# programmers prefer double-slash comments over
multi-line /* and */ comments, but both are common.

HOW TO MAKE GOOD COMMENTS
The mechanics of adding comments are simple enough. The real challenge is in making
meaningful comments.

My first suggestion is not to let TODO or reminder comments (often in the form of // TODO:
Some message here) or commented-out code last long. Both are meant to be short-lived.
They have no long-term benefit and only clutter the code.

Second, don’t say things that can be quickly gleaned from the code itself. The first comment
below adds no value, while the second one does:

// Uses Console.WriteLine to print "Hello, World!"
Console.WriteLine("Hello, World!");

// Printing "Hello, World!" is a common first program to make.
Console.WriteLine("Hello, World!");

The second comment explained why this was done, which isn’t apparent from the code itself.

Third, write comments roughly at the same time as you write the code. You will never
remember what the code did three weeks from now, so don’t wait to describe what it does.

Fourth, find the balance in how much you comment. It is possible to add both too few and too
many comments. If you can’t make sense of your code when you revisit it after a couple of
weeks, you probably aren’t commenting enough. If you keep discovering that comments have
gotten out of date, it is sometimes an indication that you are using too many comments or
putting the wrong information in comments. (Some corrections are to be expected as code
evolves.) As a new programmer, the consequences of too few comments are usually worse
than too many comments.

Don’t use comments to excuse hard-to-read code. Make the code easy to understand first,
then add just enough comments to clarify any important but unobvious details.

HOW TO MAKE GOOD COMMENTS 31

Challenge The Thing Namer 3000 100 XP
As you walk through the city of Commenton, admiring its forward-slash-based architectural buildings, a
young man approaches you in a panic. “I dropped my Thing Namer 3000 and broke it. I think it’s mostly
working, but all my variable names got reset! I don’t understand what they do!” He shows you the
following program:

Console.WriteLine("What kind of thing are we talking about?");
string a = Console.ReadLine();
Console.WriteLine("How would you describe it? Big? Azure? Tattered?");
string b = Console.ReadLine();
string c = "of Doom";
string d = "3000";
Console.WriteLine("The " + b + " " + a + " of " + c + " " + d + "!");

“You gotta help me figure it out!”

Objectives:

• Rebuild the program above on your computer.
• Add comments near each of the four variables that describe what they store. You must use at least

one of each comment type (// and /* */).
• Find the bug in the text displayed and fix it.
• Answer this question: Aside from comments, what else could you do to make this code more

understandable?

LEVEL 5
VARIABLES

 Speedrun
• A variable is a named location in memory for storing data.
• Variables have a type, a name, and a value (contents).
• Variables are declared (created) like this: int number;.
• Assigning values to variables is done with the assignment operator: number = 3;
• Using a variable name in an expression will copy the value out of the variable.
• Give your variables good names. You will be glad you did.

In this level, we will look at variables in more depth. We will also look at some rules around
good variable names.

WHAT IS A VARIABLE?
A crucial part of building software is storing data in temporary memory to use later. For
example, we might store a player’s current score or remember a menu choice long enough to
respond to it. When we talk about memory and variables, we are talking about “volatile”
memory (or RAM) that sticks around while your program runs but is wiped out when your
program closes or the computer is rebooted. (To let data survive longer than the program, we
must save it to persistent storage in a file, which is the topic of Level 39.)

A computer’s total memory is gigantic. Even my old smartphone has 3 gigabytes of memory—
large enough to store 750 million different numbers. Each memory location has a unique
numeric memory address, which can be used to access any specific location’s contents. But
remembering what’s in spot #45387 is not practical. Data comes and goes in a program. We
might need something for a split second or the whole time the program is running. Plus, not
all pieces of data are the same size. The text “Hello, World!” takes up more space than a single
number does. We need something smarter than raw memory addresses.

CREATING AND USING VARIABLES IN C# 33

A variable solves this problem for us. Variables are named locations where
data is stored in memory. Each variable has three parts: its name, type, and
contents or value. A variable’s type is important because it lets us know how
many bytes to reserve for it in memory, and it also allows the compiler to
ensure that we are using its contents correctly.

The first step in using a variable is to declare it. Declaring a variable allows
the computer to reserve a spot for it in memory of the appropriate size.

After declaring a variable, you can assign values or contents to the variable. The first time you
assign a value to a variable is called initializing it. Before a variable is initialized, it is
impossible to know what bits and bytes might be in that memory location, so initialization
ensures we only work with legitimate data.

While you can only declare a variable once, you can assign it different values over time as the
program runs. A variable for the player’s score can update as they collect points. The
underlying memory location remains the same, but the contents change with new values over
time.

The third thing you can do with a variable is retrieve its current value. The purpose of saving
the data was to come back to it later. As long as a variable has been initialized, we can retrieve
its current contents whenever we need it.

CREATING AND USING VARIABLES IN C#
The following code shows all three primary variable-related activities:

string username; // Declaring a variable
username = Console.ReadLine(); // Assigning a value to a variable
Console.WriteLine("Hi " + username); // Retrieving its current value

A variable is declared by listing its type and its name together (string username;).

A variable is assigned a value by placing the variable name on the left side of an equal sign and
the new value on the right side. This new value may be an expression that the computer will
evaluate to determine the value (username = Console.ReadLine();).

Retrieving the variable’s current value is done by simply using the variable’s name in an
expression ("Hi " + username). In this case, your program will start by retrieving the
current value in username. It then uses that value to produce the complete "Hi [name]"
message. The combined message is what is supplied to the WriteLine method.

You can declare a variable anywhere within your code. Still, because variables must be
declared before they are used, variable declarations tend to gravitate toward the top of the
code.

Each variable can only be declared once, though your programs can create many variables.
You can assign new values to variables or retrieve the current value in a variable as often as
you want:

string username;

username = Console.ReadLine();
Console.WriteLine("Hi " + username);

34 LEVEL 5 VARIABLES

username = Console.ReadLine();
Console.WriteLine("Hi " + username);

Given that username above is used to store two different usernames over time, it is
reasonable to reuse the variable. On the other hand, if the second value represents something
else—say a favorite color—then it is usually better to make a second variable:

string username;
username = Console.ReadLine();
Console.WriteLine("Hi " + username);

string favoriteColor;
favoriteColor = Console.ReadLine();
Console.WriteLine("Hi " + favoriteColor);

Remember that variable names are meant for humans to use, not the computer. Pick names
that will help human programmers understand their intent. The computer does not care.

Declaring a second variable technically takes up more space in memory, but spending a few
extra bytes (when you have billions) to make the code more understandable is a clear win.

INTEGERS
Every variable, value, and expression in your C# programs has a type associated with it. Before
now, the only type we have seen has been strings (text). But many other types exist, and we
can even define our own types. Let’s look at a second type: int, which represents an integer.

An integer is a whole number (no fractions or decimals) but either positive, negative, or zero.
Given the computer’s capacity to do math, it should be no surprise that storing numbers is
common, and many variables use the int type. For example, all of these would be well
represented as an int: a player’s score, pixel locations on a screen, a file’s size, and a country’s
population.

Declaring an int-typed variable is as simple as using the int type instead of the string type
when we declare it:

int score;

This score variable is now built to hold int values instead of text.

This type concept is important, so I’ll state it again: types matter in C#; every value, variable,
and expression has a specific type, and the compiler will ensure that you don’t mix them up.
The following fails to compile because the types don’t match:

score = "Generic User"; // DOESN'T COMPILE!

The text "Generic User" is a string, but score’s type is int. This one is more subtle:

score = "0"; // DOESN'T COMPILE!

At least this looks like a number. But enclosed in quotes like that, "0" is a string representation
of a number, not an actual number. It is a string literal, even though the characters could be
used in numbers. Anything in double quotes will always be a string. To make an int literal, you
write the number without the quote marks:

score = 0; // 0 is an int literal.

READING FROM A VARIABLE DOES NOT CHANGE IT 35

After this line of code runs, the score variable—a memory location reserved to hold ints
under the name score—has a value of 0.

The following shows that you can assign different values to score over time, as well as
negative numbers:

score = 4;
score = 11;
score = -1564;

READING FROM A VARIABLE DOES NOT CHANGE IT
When you read the contents of a variable, the variable’s contents are copied out. To illustrate:

int a;
int b;

a = 5;
b = 2;

b = a;
a = -3;

In the first two lines, a and b are declared and given an initial value (5 and 2, respectively),
which looks something like this:

On that fifth line, b = a;, the contents of a are copied out of a and replicated into b.

The variables a and b are distinct, each with its own copy of the data. b = a does not mean a
and b are now always going to be equal! That = symbol means assignment, not equality.
(Though a and b will be equal immediately after running that line until something changes.)
Once the final line runs, assigning a value of -3 to a, a will be updated as expected, but b
retains the 5 it already had. If we displayed the values of a and b at the end of this program,
we would see that a is -3 and b is 5.

There are some additional nuances to variable assignment, which we will cover in Level 14.

CLEVER VARIABLE TRICKS
Declaring and using variables is so common that there are some useful shortcuts to learn
before moving on.

36 LEVEL 5 VARIABLES

The first is that you can declare a variable and initialize it on the same line, like this:

int x = 0;

This trick is so useful that virtually all experienced C# programmers would use this instead of
putting the declaration and initialization on back-to-back lines.

Second, you can declare multiple variables simultaneously if they are the same type:

int a, b, c;

Third, variable assignments are also expressions that evaluate to whatever the assigned value
was, which means you can assign the same thing to many variables all at once like this:

a = b = c = 10;

The value of 10 is assigned to c, but c = 10 is an expression that evaluates to 10, which is
then assigned to b. b = c = 10 evaluates to 10, and that value is placed in a. The above
code is the same as the following:

c = 10;
b = c;
a = b;

In my experience, this is not very common, but it does have its uses.

And finally, while types matter, Console.WriteLine can display both strings and integers:

Console.WriteLine(42);

In the next level, we will introduce many more variable types. Console.WriteLine can
display every single one of them. That is, while types matter and are not interchangeable,
Console.WriteLine is built to allow it to work with any type. We will see how this works
and learn to do it ourselves in the future.

VARIABLE NAMES
You have a lot of control over what names you give to your variables, but the language has a
few rules:

1. Variable names must start with a letter or the underscore character (_). But C# casts a wide
net when defining “letters”—almost anything in any language is allowed. taco and
_taco are legitimate variable names, but 1taco and *taco are not.

2. After the start, you can also use numeric digits (0 through 9).
3. Most symbols and whitespace characters are banned because they make it impossible for

the compiler to know where a variable name ends and other code begins. (For example,
taco-poptart is not allowed because the - character is used for subtraction. The
compiler assumes this is an attempt to subtract something called poptart from
something called taco.)

4. You cannot name a variable the same thing as a keyword. For example, you cannot call a
variable int or string, as those are reserved, special words in the language.

I also recommend the following guidelines for naming variables:

1. Accurately describe what the variable holds. If the variable contains a player’s score,
score or playerScore are acceptable. But number and x are not descriptive enough.

VARIABLE NAMES 37

2. Don’t abbreviate or remove letters. You spend more time reading code than you do
writing it, and if you must decode every variable name you encounter, you’re doing
yourself a disservice. What did plrscr (or worse, plain ps) stand for again? Plural scar?
Plastic Scrabble? No, just player score. Common acronyms like html or dvd are an
exception to this rule.

3. Don’t fret over long names. It is better to use a descriptive name than “save characters.”
With any half-decent IDE, you can use features like AutoComplete to finish long names
after typing just a few letters anyway, and skipping the meaningful parts of names makes
it harder to remember what it does.

4. Names ending in numbers are a sign of poor names. With a few exceptions, variables
named number1, number2, and number3, do not distinguish one from another well
enough. (If they are part of a set that ought to go together, they should be packaged that
way; see Level 12.)

5. Avoid generic catch-all names. Names like item, data, text, and number are too
vague to be helpful in most cases.

6. Make the boundaries between multi-word names clear. A name like playerScore is
easier to read than playerscore. Two conventions among C# programmers are
camelCase (or lowerCamelCase) and PascalCase (or UpperCamelCase), which
are illustrated by the way their names are written. In the first, every word but the first starts
with a capital letter. In the second, all words begin with a capital letter. The big capital
letter in the middle of the word makes it look like a camel’s hump, which is why it has this
name. Most C# programmers use lowerCamelCase for variables and UpperCamel
Case for other things. I recommend sticking with that convention as you get started, but
the choice is yours.

Picking good variable names doesn’t guarantee readable code, but it goes a long way.

Knowledge Check Variables 25 XP
Check your knowledge with the following questions:

1. Name the three things all variables have.
2. True/False. Variables must always be declared before being used.
3. Can you redeclare a variable?
4. Which of the following are legal C# variable names? answer, 1stValue, value1, $message,

delete-me, delete_me, PI.

Answers: (1) name, type, value. (2) True. (3) No. (4) answer, value1, delete_me, PI.

LEVEL 6
THE C# TYPE SYSTEM

 Speedrun
• Types of variables and values matter in C#. They are not interchangeable.
• There are eight integer types for storing integers of differing sizes and ranges: int, short, long,

byte, sbyte, uint, ushort, and ulong.
• The char type stores single characters.
• The string type stores longer text.
• There are three types for storing real numbers: float, double, and decimal.
• The bool type stores truth values (true and false) used in logic.
• These types are the building blocks of a much larger type system.
• Using var for a variable’s type tells the compiler to infer its type from the surrounding code, so you

do not have to type it out. (But it still has a specific type.)
• The Convert class helps convert one type to another.

In C#, types of variables and values matter (and must match), but we only know about two
types so far. In this level, we will introduce a diverse set of types we can use in our programs.
These types are called built-in types or primitive types. They are building blocks for more
complex types that we will see later.

REPRESENTING DATA IN BINARY
Why do types matter so much?

Every piece of data you want to represent in your programs must be stored in the computer’s
circuitry, limited to only the 1’s and 0’s of binary. If we're going to store a number, we need a
scheme for using bits (a single 1 or 0) and bytes (a group of 8 bits and the standard grouping
size of bits) to represent the range of possible numbers we want to store. If we’re going to
represent a word, we need some scheme for using the bits and bytes to represent both letters
and sequences (strings) of letters. More broadly, anything we want to represent in a program
requires a scheme for expressing it in binary.

INTEGER TYPES 39

Each type defines its own rules for representing values in binary, and different types are not
interchangeable. You cannot take bits and bytes meant to represent an integer and reinterpret
those bits and bytes as a string and expect to get meaning out of it. Nor can you take bits and
bytes meant to represent text and reinterpret them as an integer and expect it to be
meaningful. They are not the same. There’s no getting around it.

That doesn’t mean that each type is a world unto itself that can never interact with the other
worlds. We can and will convert from one type to another frequently. But the costs associated
with conversion are not free, so we do it conscientiously rather than accidentally.

Notably, C# does not invent entirely new schemes and rules for most of its types. The
computing world has developed schemes for common types like numbers and letters, and C#
reuses these schemes when possible. The physical hardware of the computer also uses these
same schemes. Since it is baked into the circuitry, it can be fast.

The specifics of these schemes are beyond this book’s scope, but let’s do a couple of thought
experiments to explore.

Suppose we want to represent the numbers 0 through 10. We need to invent a way to describe
each of these numbers with only 0’s and 1’s. Step 1 is to decide how many bits to use. One bit
can store two possible states (0 and 1), and each bit you add after that doubles the total
possibilities. We have 11 possible states, so we will need at least 4 bits to represent all of them.
Step 2 is to figure out which bit patterns to assign to each number. 0 can be 0000. 1 can be
0001. Now it gets a little more complicated. 2 is 0010, and 3 is 0011. (We’re counting in
binary if that happens to be familiar to you.) We’ve used up all possible combinations of the
two bits on the right and need to use the third bit. 4 is 0100, 5 is 0101, and so on, all the way
to 10, which is 1010. We have some unused bit patterns. 1011 isn’t anything yet. We could go
all the way up to 15 without needing any more bits.

We have one problem: the computer doesn’t deal well with anything smaller than full bytes.
Not a big deal; we’ll just use a full byte of eight bits.

If we want to represent letters, we can do a similar thing. We could assign the letter A to
01000001, B to 01000010, and so on. (C# actually uses two bytes for every character.)

If we want to represent text (a string), we can use our letters as a building block. Perhaps we
could use a full byte to represent how many letters long our text is and then use two bytes for
each letter in the word. This is tricky because short words need to use fewer bytes than longer
words, and our system has to account for that. But this would be a workable scheme.

We don’t have to invent these schemes for types ourselves, fortunately. The C# language has
taken care of them for us. But hopefully, this illustrates why we can’t magically treat an integer
and a string as the same thing. (Though we will be able to convert from one type to another.)

INTEGER TYPES
Let’s explore the basic types available in a C# program, starting with the types used to
represent integers. While we used the int type in the previous level, there are eight different
types for working with integers. These eight types are called integer types or integral types.
Each uses a different number of bytes, which allows you to store bigger numbers using more
memory or store smaller numbers while conserving memory.

The int type uses 4 bytes and can represent numbers between roughly -2 billion and +2
billion. (The specific numbers are in the table below.)

40 LEVEL 6 THE C# TYPE SYSTEM

In contrast, the short type uses 2 bytes and can represent numbers between about -32,000
and +32,000. The long type uses 8 bytes and can represent numbers between about -9
quintillion and +9 quintillion (a quintillion is a billion billion).

Their sizes and ranges tell you when you might choose short or long over int. If memory
is tight and a short’s range is sufficient, you can use a short. If you need to represent
numbers larger than an int can handle, you need to move up to a long, even at the cost of
more bytes.

The short, int, and long types are signed types; they include a positive or negative sign and
store positive and negative values. If you only need positive numbers, you could imagine
shifting these ranges upward to exclude negative values but twice as many positive values.
This is what the unsigned types are for: ushort, uint, and ulong. Each of these uses the
same number of bytes as their signed counterpart, cannot store negative numbers, but can
store twice as many positive numbers. Thus ushort’s range is 0 to about 65,000, uint’s range
is 0 to about 4 billion, and ulong’s range is 0 to about 18 quintillion.

The last two integer types are a bit different. The first is the byte type, using a single byte to
represent values from 0 to 255 (unsigned). While integer-like, the byte type is more often
used to express a byte or collection of bytes with no specific structure (or none known to the
program). The byte type has a signed counterpart, sbyte, representing values in the
range -128 to +127. The sbyte type is not used very often but makes the set complete.

The table below summarizes this information.

Name Bytes Allow Negatives Minimum Maximum

byte 1 No 0 255

short 2 Yes -32,768 32,767

int 4 Yes -2,147,483,648 2,147,483,647

long 8 Yes -9,223,372,036,854,775,808 9,223,372,036,854,775,807

sbyte 1 Yes -128 127

ushort 2 No 0 65,535

uint 4 No 0 4,294,967,295

ulong 8 No 0 18,446,744,073,709,551,615

Declaring and Using Variables with Integer Types
Declaring variables of these other types is as simple as using their type names instead of int
or string, as we have done before:

byte aSingleByte = 34;
aSingleByte = 17;

short aNumber = 5039;
aNumber = -4354;

long aVeryBigNumber = 395904282569;
aVeryBigNumber = 13;

In the past, we saw that writing out a number directly in our code creates an int literal. But
this brings up an interesting question. How do we create a literal that is a byte literal or a
ulong literal?

For things smaller than an int, nothing special is needed to create a literal of that type:

INTEGER TYPES 41

byte aNumber = 32;

The 32 is an int literal, but the compiler is smart enough to see that you are trying to store it
in a byte and can ensure by inspection that 32 is within the allowed range for a byte. The
compiler handles it. In contrast, if you used a literal that was too big for a byte, you would get
a compiler error, preventing you from compiling and running your program.

This same rule also applies to sbyte, short, and ushort.

If your literal value is too big to be an int, it will automatically become a uint literal, a long
literal, or a ulong literal (the first of those capable of representing the number you typed).
You will get a compiler error if you make a literal whose value is too big for everything. To
illustrate how these bigger literal types work, consider this code:

long aVeryBigNumber = 10000000000; // 10 billion would be a `long` literal.

You may occasionally find that you want to force a smaller number to be one of the larger
literal types. You can force this by putting a U or L (or both) at the end of the literal value:

ulong aVeryBigNumber = 10000000000U;
aVeryBigNumber = 10000000000L;
aVeryBigNumber = 10000000000UL;

A U signifies that it is unsigned and must be either a uint or ulong. L indicates that the literal
must be a long or a ulong, depending on the size. A UL indicates that it must be a ulong.
These suffixes can be uppercase or lowercase and in either order. However, avoid using a
lowercase l because that looks too much like a 1.

You shouldn’t need these suffixes very often.

The Digit Separator
When humans write a long number like 1,000,000,000, we often use a separator like a comma
to make interpreting the number easier. While we can’t use the comma for that in C#, there is
an alternative: the underscore character (_).

int bigNumber = 1_000_000_000;

The normal convention for writing numbers is to group them by threes (thousands, millions,
billions, etc.), but the C# compiler does not care where these appear in the middle of numbers.
If a different grouping makes more logical sense, use it that way. All the following are allowed:

int a = 123_456_789;
int b = 12_34_56_78_9;
int c = 1_2__3___4____5;

Choosing Between the Integer Types
With eight types for storing integers, how do you decide which one to use?

On the one hand, you could carefully consider the possible range of values you might want for
any variable and then pick the smallest (to save on memory usage) that can fit the intended
range. For example, if you need a player’s score and know it can never be negative, you have
cut out half of the eight options right there. If the player’s score may be in the hundreds of
thousands in any playthrough, you can rule out byte and ushort because they’re not big
enough. That leaves you with only uint and ulong. If you think a player’s score might

42 LEVEL 6 THE C# TYPE SYSTEM

approach 4 billion, you’d better use ulong, but if scores will only reach a few million, then a
uint is safe. (You can always change a variable’s type and recompile your program if you got
it wrong—software is soft after all—but it is easier to have just been right the first time.)

The strategy of picking the smallest practical range for any given variable has merit, but it has
two things going against it. The first is that in modern programming, rarely does saving a single
byte of space matter. There is too much memory around to fret over individual bytes. The
second is that computers do not have hardware that supports math with smaller types. The
computer upgrades them to ints and runs the math as ints, forcing you to then go to the
trouble of converting the result back to the smaller type. The int type is more convenient than
sbyte, byte, short, and ushort if you are doing many math operations.

Thus, the more common strategy is to use int, uint, long, or ulong as necessary and only
use byte, sbyte, short, and ushort when there is a clear and significant benefit.

Binary and Hexadecimal Literals
So far, the integer literals we have written have all been written using base 10, the normal 10-
digit system humans typically use. But in the programming world, it is occasionally easier to
write out the number using either base 2 (binary digits) or base 16 (hexadecimal digits, which
are 0 through 9, and then the letters A through F).

To write a binary literal, start your number with a 0b. For example:

int thirteen = 0b00001101;

For a hexadecimal literal, you start your number with 0x:

int theColorMagenta = 0xFF00FF;

This example shows one of the places where this might be useful. Colors are often represented
as either six or eight hexadecimal digits.

TEXT: CHARACTERS AND STRINGS
There are more numeric types, but let’s turn our attention away from numbers for a moment
and look at representing single letters and longer text.

In C#, the char type represents a single character, while our old friend string represents
text of any length.

The char type is very closely related to the integer types. It is even lumped into the integral
type banner with the other integer types. Each character of interest is given a number
representing it, which amounts to a unique bit pattern. The char type is not limited to just
keyboard characters. The char type uses two bytes to allow for 65,536 distinct characters. The
number assigned to each character follows a widely used standard called Unicode. This set
covers English characters and every character in every human-readable language and a whole
slew of other random characters and emoji. A char literal is made by placing the character in
single quotes:

char aLetter = 'a';
char baseball = '⚾';

FLOATING-POINT TYPES 43

You won’t find too many uses for the esoteric characters. The console window doesn’t even
know how to display the baseball character above). Still, the diversity of characters available
is nice.

If you know the hexadecimal Unicode number for a symbol and would prefer to use that, you
can write that out after a \u:

char aLetter = '\u0061'; // An 'a'

The string type aggregates many characters into a sequence to allow for arbitrary text to be
represented. The word “string” comes from the math world, where a string is a sequence of
symbols chosen from a defined set of allowed symbols, one after the other, of any length. It is
a word that the programming world has stolen from the math world, and most programming
languages refer to this idea as strings.

A string literal is made by placing the desired text in double quotes:

string message = "Hello, World!";

FLOATING-POINT TYPES
We now return to the number world to look at types that represent numbers besides integers.
How do we represent 1.21 gigawatts or the special number π?

C# has three types that are called floating-point data types. These represent what
mathematicians call real numbers, encompassing integers and numbers with a decimal or
fractional component. While we cannot represent 3.1415926 as an integer (3 is the best we
could do), we can represent it as a floating-point number.

The “point” in the name refers to the decimal point that often appears when writing out these
numbers.

The “floating” part comes because it contrasts with fixed-point types. The number of digits
before and after the decimal point is locked in place with a fixed-point type. The decimal point
may appear anywhere within the number with a floating-point type. C# does not have fixed-
point types because they prevent you from efficiently using very large or very small numbers.
In contrast, floating-point numbers let you represent a specific number of significant digits
and scale them to be big or small. For example, they allow you to express the numbers
1,250,421,012.6 and 0.00000000000012504210126 equally well, which is something a fixed-
point representation cannot reasonably do.

With floating-point types, some of the bits store the significant digits, affecting how precise
you can be, while other bits define how much to scale it up or down, affecting the magnitudes
you can represent. The more bits you use, the more of either you can do.

There are three flavors of floating-point numbers: float, double, and decimal. The float
type uses 4 bytes, while double uses twice that many (hence the “double”) at 8 bytes. The
decimal type uses 16 bytes. While float and double follow conventions used across the
computing world, including in the computer’s circuitry itself, decimal does not. That means
float and double are faster. However, decimal uses most of its many bits for storing
significant figures and is the most precise floating-point type. If you are doing something that
needs extreme precision, even at the cost of speed, decimal is the better choice.

All floating-point numbers have ranges that are so mind-boggling in size that you wouldn’t
want to write them out the typical way. The math world often uses scientific notation to

44 LEVEL 6 THE C# TYPE SYSTEM

compactly write extremely big or small numbers. A thorough discussion of scientific notation
is beyond the scope of this book, but you can think of it as writing the zeroes in a number as a
power of ten. Instead of 200, we could write 2×102. Instead of 200000, we could write 2×105. As
the exponent grows by 1, the number of total digits also increases by 1. The exponent tells us
the scale of the number.

The same technique can be used for very tiny numbers, though the exponent is negative.
Instead of 0.02, we could write 2×10-2. Instead of 0.00002, we could write 2×10-5.

Now imagine what the numbers 2×1020 and 2×10-20 would look like when written the
traditional way. With that image in your mind, let’s look at what ranges the floating-point types
can represent.

A float can store numbers as small as 3.4×10-45 and as large as 3.4×1038. That is small enough
to measure quarks and large enough to measure the visible universe many times over. A
float has 6 to 7 digits of precision, depending on the number, meaning it can represent the
number 10000 and the number 0.0001, but does not quite have the resolution to differentiate
between 10000 and 10000.0001.

A double can store numbers as small as 5×10-324 and as large as 1.7×10308, with 15 to 16 digits
of precision.

A decimal can store numbers as small as 1.0×10-28 and as large as 7.9×1028, with 28 to 29 digits
of precision.

I’m not going to write out all of those numbers in normal notation, but it is worth taking a
moment to imagine what they might look like.

All three floating-point representations are insane in size, but seeing the exponents, you
should have a feel for how they compare to each other. The float type uses the fewest bytes,
and its range and precision are good enough for almost everything. The double type can
store the biggest big numbers and the smallest small numbers with even more precision than
a float. The decimal type’s range is the smallest of the three but is the most precise and is
great for calculations where accuracy matters (like financial or monetary calculations).

The table below summarizes how these types compare to each other:

Type Bytes Range Digits of Precision Hardware Supported

float 4 ±1.0 × 10-45 to ±3.4 × 1038 7 Yes

double 8 ±5 × 10-324 to ±1.7 × 10308 15-16 Yes

decimal 16 ±1.0 × 10-28 to ±7.9 × 1028 28-29 No

Creating variables of these types is the same as any other type, but it gets more interesting
when you make float, double, and decimal literals:

double number1 = 3.5623;
float number2 = 3.5623f;
decimal number3 = 3.5623m;

If a number literal contains a decimal point, it becomes a double literal instead of an integer
literal. Appending an f or F onto the end (with or without the decimal point) makes it a float
literal. Appending an m or M onto makes it into a decimal literal. (The “m” is for “monetary”
or “money.” Financial calculations often need incredibly high precision.)

All three types can represent a bigger range than any integer type, so if you use an integer
literal, the compiler will automatically convert it.

THE BOOL TYPE 45

Scientific Notation
As we saw when we first introduced the range floating-point numbers can represent, really big
and really small numbers are more concisely represented in scientific notation. For example,
6.022×1023 instead of 602,200,000,000,000,000,000,000. (That number, by the way, is called
Avogadro’s Number—a number with special significance in chemistry.) The × symbol is not
one on a keyboard, so for decades, scientists have written a number like 6.022×1023 as
6.022e23, where the e stands for “exponent.” Floating-point literals in C# can use this same
notation by embedding an e or E in the number:
double avogadrosNumber = 6.022e23;

THE BOOL TYPE
The last type we will cover in this level is the bool type. The bool type might seem strange if
you are new to programming, but we will see its value before long. The bool type gets its name
from Boolean logic, which was named after its creator, George Boole. The bool type
represents truth values. These are used in decision-making, which we will cover in Level 9. It
has two possible options: true and false. Both of those are bool literals that you can write
into your code:

bool itWorked = true;
itWorked = false;

Some languages treat bool as nothing more than fancy ints, with false being the number
0 and true being anything else. But C# delineates ints from bools because conflating the
two is a pathway to lots of common bug categories.

A bool could theoretically use just a single bit, but it uses a whole byte.

Challenge The Variable Shop 100 XP
You see an old shopkeeper struggling to stack up variables in a window display. “Hoo-wee! All these
variable types sure are exciting but setting them all up to show them off to excited new programmers
like yourself is a lot of work for these aching bones,” she says. “You wouldn’t mind helping me set up this
program with one variable of every type, would you?”

Objectives:

• Build a program with a variable of all fourteen types described in this level.
• Assign each of them a value using a literal of the correct type.
• Use Console.WriteLine to display the contents of each variable.

Challenge The Variable Shop Returns 50 XP
“Hey! Programmer!” It’s the shopkeeper from the Variable Shop who hobbles over to you. “Thanks to
your help, variables are selling like RAM cakes! But these people just aren’t any good at programming.
They keep asking how to modify the values of the variables they’re buying, and… well… frankly, I have no
clue. But you’re a programmer, right? Maybe you could show me so I can show my customers?”

Objectives:

46 LEVEL 6 THE C# TYPE SYSTEM

• Modify your Variable Shop program to assign a new, different literal value to each of the 14 original
variables. Do not declare any additional variables.

• Use Console.WriteLine to display the updated contents of each variable.

This level has introduced the 14 most fundamental types of C#. It may seem a lot to take in,
and you may still be wondering when to use one type over another. But don’t worry too much.
This level will always be here as a reference when you need it.

These are not the only possible types in C#. They are more like chemical elements, serving as
the basis or foundation for producing other types.

TYPE INFERENCE
Types matter greatly in C#. Every variable, value, and expression has a specific, known type.
We have been very specific when declaring variables to call out each variable’s type. But the
compiler is very smart. It can often look at your code and figure out (“infer”) what type
something is from clues and cues around it. This feature is called type inference. It is the
Sherlock Holmes of the compiler.

Type inference is used for many language features, but a notable one is that the compiler can
infer the type of a variable based on the code that it is initialized with. You don’t always need
to write out a variable’s type yourself. You can use the var keyword instead:

var message = "Hello, World!";

The compiler can tell that "Hello, World!" is a string, and therefore, message must be
a string for this code to work. Using var tells the compiler, “You’ve got this. I know you can
figure it out. I’m not going to bother writing it out myself.”

This only works if you initialize the variable on the same line it is declared. Otherwise, there is
not enough information for the compiler to infer its type. This won’t work:

var x; // DOES NOT COMPILE!

There are no clues to facilitate type inference here, so the type inference fails. You will have to
fall back to using specific, named types.

In Visual Studio, you can easily see what type the compiler inferred by hovering the mouse
over the var keyword until the tooltip appears, which shows the inferred type.

Many programmers prefer to use var everywhere they possibly can. It is often shorter and
cleaner, especially when we start using types with longer names.

But there are two potential problems to consider with var. The first is that the computer
sometimes infers the wrong type. These errors are sometimes subtle. The second problem is
that the computer is faster at inferring a variable’s type than a human. Consider this code:

var input = Console.ReadLine();

The computer can infer that input is a string since it knows ReadLine returns strings.
It is much harder for us humans to pull this information out of memory.

It is worse when the code comes from the Internet or a book because you don’t necessarily
have all of the information to figure it out. For that reason, I will usually avoid var in this book.

THE CONVERT CLASS AND THE PARSE METHODS 47

I recommend that you skip var and use specific types as you start working in C#. Doing this
helps you think about types more carefully. After some practice, if you want to switch to var,
go for it.

I want to make this next point very clear, so pay attention: a variable that uses var still has a
specific type. It isn’t a mystery type, a changeable type, or a catch-all type. It still has a specific
type; we have just left it unwritten. This does not work:

var something = "Hello";
something = 3; // ERROR. Cannot store an int in a string-typed variable.

THE CONVERT CLASS AND THE PARSE METHODS
With 14 types at our disposal, we will sometimes need to convert between types. The easiest
way is with the Convert class. The Convert class is like the Console class—a thing in the
system that provides you with a set of tasks or capabilities that it can perform. The Convert
class is for converting between these different built-in types. To illustrate:

Console.Write("What is your favorite number?");
string favoriteNumberText = Console.ReadLine();
int favoriteNumber = Convert.ToInt32(favoriteNumberText);
Console.Write(favoriteNumber + " is a great number!");

You can see that Convert’s ToInt32 method needs a string as an input and gives back or
returns an int as a result, converting the text in the process. The Convert class has
ToWhatever methods to convert among the built-in types:

Method Name Target Type Method Name Target Type

ToByte byte ToSByte sbyte

ToInt16 short ToUInt16 ushort

ToInt32 int ToUInt32 uint

ToInt64 long ToUInt64 ulong

ToChar char ToString string

ToSingle float ToDouble double

ToDecimal decimal ToBoolean bool

Most of the names above are straightforward, though a few deserve some explanation. The
names are not a perfect match because the Convert class is part of .NET’s Base Class Library,
which all .NET languages use. No two languages use the same name for things like int and
double.

 The short, int, and long types, use the word Int and the number of bits they use. For
example, a short uses 16 bits (2 bytes), so ToInt16 converts to a short. ushort, uint,
and ulong do the same, just with UInt.

The other surprise is that converting to a float is ToSingle instead of ToFloat. But a
double is considered “double precision,” and a float is “single precision,” which is where
the name comes from.

All input from the console window starts as strings. Many of our programs will need to
convert the user’s text to another type to work with it. The process of analyzing text, breaking

48 LEVEL 6 THE C# TYPE SYSTEM

it apart, and transforming it into other data is called parsing. The Convert class is a great
starting point for parsing text, though we will also learn additional parsing tools over time.

Parse Methods
Some C# programmers prefer an alternative to the Convert class. Many of these types have
a Parse method to convert a string to the type. For example:

int number = int.Parse("9000");

Some people prefer this style over the mostly equivalent Convert.ToInt32. I’ll generally
use the Convert class in this book. But feel free to use this second approach if you prefer it.

Knowledge Check Type System 25 XP
Check your knowledge with the following questions:

1. True/False. The int type can store any possible integer.
2. Order the following by how large their range is, from smallest to largest: short, long, int, byte.
3. True/False. The byte type is signed.
4. Which can store higher numbers, int or uint?
5. What three types can store floating-point numbers?
6. Which of the options in question 5 can hold the largest numbers?
7. Which of the options in question 5 is the most precise?
8. What type does the literal value "8" (including the quotes) have?
9. What type stores true or false values?

Answers: (1) false. (2) byte, short, int, long. (3) false. (4) uint. (5) float, double,
decimal. (6) double. (7) decimal. (8) string. (9) bool.

The following page contains a diagram that summarizes the C# type system. It includes
everything we have discussed in this level and quite a few other types and categories we will
discuss in the future.

THE CONVERT CLASS AND THE PARSE METHODS 49

LEVEL 7
MATH

 Speedrun
• Addition (+), subtraction (-), multiplication (*), division (/), and remainder (%) can all be used to do

math in expressions: int a = 3 + 2 / 4 * 6;
• The + and - operators can also be used to indicate a sign (or negate a value): +3, -2, or -a.
• The order of operations matches the math world. Multiplication and division happen before addition

and subtraction, and things are evaluated left to right.
• Change the order by using parentheses to group things you want to be done first.
• Compound assignment operators (+=, -=, *=, /=, %=) are shortcuts that adjust a variable with a math

operation. a += 3; is the same as a = a + 3;

• The increment and decrement operators add and subtract one: a++; b--;
• Each of the numeric types defines special values for their ranges (int.MaxValue, double.

MinValue, etc.), and the floating-point types also define PositiveInfinity,
NegativeInfinity, and NaN.

• Integer division drops remainders while floating-point division does not. Dividing by zero in either
system is bad.

• You can convert between types by casting: int x = (int)3.3;
• The Math and MathF classes contain a collection of utility methods for dealing with common math

operations such as Abs for absolute value, Pow and Sqrt for powers and square roots, and Sin, Cos,
and Tan for the trigonometry functions sine, cosine, and tangent, and a definition of π (Math.PI)

Computers were built for math, and it is high time we saw how to make the computer do some
basic arithmetic.

OPERATIONS AND OPERATORS
Let’s start by defining a few terms. An operation is a calculation that takes (usually) two
numbers and produces a single result by combining them somehow. Each operator indicates

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION 51

how the numbers are combined, and a particular symbol represents each operator. For
example, 2 + 3 is an operation. The operation is addition, shown with the + symbol. The
things an operation uses—the 2 and 3 here—are called operands.

Most operators need two operands. These are called binary operators (“binary” meaning
“composed of two things”). An operator that needs one operand is a unary operator, while one
that needs three is a ternary operator. C# has many binary operators, a few unary operators,
and a single ternary operator.

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION
C# borrows the operator symbols from the math world where it can. For example, to add
together 2 and 3 and store its result into a variable looks like this:

int a = 2 + 3;

The 2 + 3 is an operation, but all operations are also expressions. When our program runs,
it will take these two values and evaluate them using the operation listed. This expression
evaluates to a 5, which is the result placed in a’s memory.

The same thing works for subtraction:

int b = 5 - 2;

Arithmetic like this can be used in any expression, not just when initializing a variable:

int a; // Declaring the variable a.
a = 9 - 2; // Assigning a value to a, using some math.
a = 3 + 3; // Another assignment.

int b = 3 + 1; // Declaring b and assigning a value to b all at once.
b = 1 + 2; // Assigning a second value to b.

Operators do not need literal values; they can use any expression. For example, the code
below uses more complex expressions that contain variables:

int a = 1;
int b = a + 4;
int c = a - b;

That is important. Operators and expressions allow us to work through some process
(sometimes called an algorithm) to compute a result that we care about, step by step. Variables
can be updated over time as our process runs.

Multiplication uses the asterisk (*) symbol:

float totalPies = 4;
float slicesPerPie = 8;
float totalSlices = totalPies * slicesPerPie;

Division uses the forward slash (/) symbol.

double moneyMadeFromGame = 100000;
double totalProgrammers = 4;
double moneyPerPerson = moneyMadeFromGame / totalProgrammers;

52 LEVEL 7 MATH

These last two examples show that you can do math with any numeric type, not just int.
There are some complications when we intermix types in math expressions and use the
“small” integer types (byte, sbyte, short, ushort). For the moment, let’s stick with a single
type and avoid the small types. We’ll address those problems before the end of this level.

COMPOUND EXPRESSIONS AND ORDER OF OPERATIONS
So far, our math expressions have involved only a single operator at a time. But like in the math
world, our math expressions can combine many operators. For example, the following uses
two different operations in a single expression:

int result = 2 + 5 * 2;

When this happens, the trick is understanding which operation happens first. If we do the
addition first, the result is 14. If we do the multiplication first, the result is 12.

There is a set of rules that governs what operators are evaluated first. This ruleset is called the
order of operations. There are two parts to this: (1) operator precedence determines which
operation types come before others (multiplication before addition, for example), and (2)
operator associativity tells you whether two operators of the same precedence should be
evaluated from left to right or right to left.

Fortunately, C# steals the standard mathematical order of operations (to the extent that it
can), so it will all feel natural if you are familiar with the order of operations in math.

C# has many operators beyond addition, subtraction, multiplication, and division, so the
complete ruleset is complicated. The book’s website has a table that shows the whole picture:
csharpplayersguide.com/articles/operators-table. For now, it is enough to say that the
following two rules apply:

• Multiplication and division are done first, left to right.
• Addition and subtraction are done last, left to right.

With these rules, we can know that the expression 2 + 5 * 2 will evaluate the multiplication
first, turning it into 2 + 10, and the addition is done after, for a final result of 12, which is
stored in result.

If you ever need to override the natural order of operations, there are two tools you can use.
The first is to move the part you want to be done first to its own statement. Statements run
from top to bottom, so doing this will force an operation to happen before another:

int partialResult = 2 + 5;
int result = partialResult * 2;

This is also handy when a single math expression has grown too big to understand at a glance.

The other option is to use parentheses. Parentheses create a sub-expression that is evaluated
first:

int result = (2 + 5) * 2;

Parentheses force the computer to do 2 + 5 before the multiplication. The math world uses
this same trick.

https://csharpplayersguide.com/articles/operators-table

COMPOUND EXPRESSIONS AND ORDER OF OPERATIONS 53

In the math world, square brackets ([and]) and curly braces ({ and }) are sometimes used
as more “powerful” grouping symbols. C# uses those symbols for other things, so instead, you
just use multiple sets of parentheses inside of each other:

int result = ((2 + 1) * 8 - (3 * 2) * 2) / 4;

Remember, though: the goal isn’t to cram it all into a single line, but to write code you’ll be
able to understand when you come back to it in two weeks.

Let’s walk through another example. This code computes the area of a trapezoid:

// Some code for the area of a trapezoid (http://en.wikipedia.org/wiki/Trapezoid)

double side1 = 4.5;
double side2 = 3.5;
double height = 1.5;

double areaOfTrapezoid = (side1 + side2) / 2.0 * height;

Parentheses are evaluated first, so we start by resolving the expression side1 + side2. Our
program will retrieve the values in each variable and then perform the addition (a value of 8).
At this point, the overall expression could be thought of as the simplified 8.0 / 2.0 *
height. Division and multiplication have the same precedence, so we divide before we
multiply because those are done left to right. 8.0 / 2.0 is 4.0, and our expression is
simplified again to 4.0 * height. Multiplication is now the only operation left to address,
so we perform it by retrieving the value in height (1.5) and multiplying for a final result of
6.0. That is the value we place into the areaOfTrapezoid variable.

Challenge The Triangle Farmer 100 XP
As you pass through the fields near Arithmetica City, you encounter P-Thag, a triangle farmer, scratching
numbers in the dirt.

“What is all of that writing for?” you ask.

“I’m just trying to calculate the area of all of my triangles. They sell by their size. The bigger they are, the
more they are worth! But I have many triangles on my farm, and the math gets tricky, and I sometimes
make mistakes. Taking a tiny triangle to town thinking you’re going to get 100 gold, only to be told it’s
only worth three, is not fun! If only I had a program that could help me….” Suddenly, P-Thag looks at you
with fresh eyes. “Wait just a moment. You have the look of a Programmer about you. Can you help me
write a program that will compute the areas for me, so I can quit worrying about math mistakes and get
back to tending to my triangles? The equation I’m using is this one here,” he says, pointing to the formula,
etched in a stone beside him:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑏𝑏𝐴𝐴𝑏𝑏𝐴𝐴 × ℎ𝐴𝐴𝑒𝑒𝑒𝑒ℎ𝑡𝑡

2

Objectives:

• Write a program that lets you input the triangle’s base size and height.
• Compute the area of a triangle by turning the above equation into code.
• Write the result of the computation.

54 LEVEL 7 MATH

SPECIAL NUMBER VALUES
Each of the 11 numeric types—eight integer types and three floating-point types—defines a
handful of special values you may find useful.

All 11 define a MinValue and a MaxValue, which is the minimum and maximum value they
can correctly represent. These are essentially defined as variables (technically properties,
which we’ll learn more about in Level 20) that you get to through the type name. For example:

int aBigNumber = int.MaxValue;
short aBigNegativeNumber = short.MinValue;

These things are a little different than the methods we have seen in the past. They are more
like variables than methods, and you don’t use parentheses to use them.

The double and float types (but not decimal) also define a value for positive and negative
infinity called PositiveInfinity and NegativeInfinity:

double infinity = double.PositiveInfinity;

Many computers will use the ∞ symbol to represent a numeric value of infinity. This is the
symbol used for infinity in the math world. Awkwardly, some computers (depending on
operating system and configuration) may use the digit 8 to represent infinity in the console
window. That can be confusing if you are not expecting it. You can tweak settings to get the
computer to do better.

double and float also define a weird value called NaN, or “not a number.” NaN is used when
a computation results in an impossible value, such as division by zero. You can refer to it as
shown in the code below:

double notAnyRealNumber = double.NaN;

INTEGER DIVISION VS. FLOATING-POINT DIVISION
Try running this program and see if the displayed result is what you expected:

int a = 5;
int b = 2;
int result = a / b;
Console.WriteLine(result);

On a computer, there are two approaches to division. Mathematically, 5/2 is 2.5. If a, b, and
result were all floating-point types, that’s what would have happened. This division style is
called floating-point division because it is what you get with floating-point types.

The other option is integer division. When you divide with any of the integer types, fractional
bits of the result are dropped. This is different from rounding; even 9/10, which
mathematically is 0.9, becomes a simple 0. The code above uses only integers, and so it uses
integer division. 5/2 becomes 2 instead of 2.5, which is placed into result.

This does take a little getting used to, and it will catch you by surprise from time to time. If you
want integer division, use integers. If you want floating-point division, use floating-point
types. Both have their uses. Just make sure you know which one you need and which one
you’ve got.

DIVISION BY ZERO 55

DIVISION BY ZERO
In the math world, division by zero is not defined—a meaningless operation without a
specified result. When programming, you should also expect problems when dividing by zero.
Once again, integer types and floating-point types have slightly different behavior here,
though either way, it is still “bad things.”

If you divide by zero with integer types, your program will produce an error that, if left
unhandled, will crash your program. We talk about error handling of this nature in Level 35.

If you divide by zero with floating-point types, you do not get the same kind of crash. Instead,
it assumes that you actually wanted to divide by an impossibly tiny but non-zero number (an
“infinitesimal” number), and the result will either be positive infinity, negative infinity, or NaN
depending on whether the numerator was a positive number, negative number, or zero
respectively. Mathematical operations with infinities and NaNs always result in more infinities
and NaNs, so you will want to protect yourself against dividing by zero in the first place when
you can.

MORE OPERATORS
Addition, subtraction, multiplication, and division are not the only operators in C#. There are
many more. We will cover a few more here and others throughout this book.

Unary + and - Operators
While + and – are typically used for addition and subtraction, which requires two operands
(a - b, for example), both have a unary version, requiring only a single operand:

int a = 3;
int b = -a;
int c = +a;

The – operator negates the value after it. Since a is 3, -a will be -3. If a had been -5, -a would
evaluate to +5. It reverses the sign of a. Or you could think of it as multiplying it by -1.

The unary + doesn’t do anything for the numeric types we have seen in this level, but it can
sometimes add clarity to the code (in contrast to -). For example:

int a = 3;
int b = -(a + 2) / 4;
int c = +(a + 2) / 4;

The Remainder Operator
Suppose I bring 23 apples to the apple party (doctors beware) and you, me, and Johnny are at
the party. There are two ways we could divide the apples. 23 divided 3 ways does not come out
even. We could chop up the apples and have fractional apples (we’d each get 7.67 apples).
Alternatively, if apple parts are not valuable (I don’t want just a core!), we can set aside
anything that doesn’t divide out evenly. This leftover amount is called the remainder. That is,
each of the three of us would get 7 whole apples, with a remainder of 2.

C#’s remainder operator computes remainders in this same fashion using the % symbol. (Some
call this the modulus operator or the mod operator, though those two terms mean slightly
different things for negative numbers.) Computing the leftover apples looks like this in code:

56 LEVEL 7 MATH

int leftOverApples = 23 % 3;

The remainder operator may not seem useful initially, but it can be handy. One common use
is to decide if some number is a multiple of another number. If so, the remainder would be 0.
Consider this code:

int remainder = n % 2; // If this is 0, then 'n' is an even number.

If remainder is 0, then the number is divisible by two—which also tells us that it is an even
number.

The remainder operator has the same precedence as multiplication and division.

Challenge The Four Sisters and the Duckbear 100 XP
Four sisters own a chocolate farm and collect chocolate eggs laid by chocolate chickens every day. But
more often than not, the number of eggs is not evenly divisible among the sisters, and everybody knows
you cannot split a chocolate egg into pieces without ruining it. The arguments have grown more heated
over time. The town is tired of hearing the four sisters complain, and Chandra, the town’s Arbiter, has
finally come up with a plan everybody can agree to. All four sisters get an equal number of chocolate
eggs every day, and the remainder is fed to their pet duckbear. All that is left is to have some skilled
Programmer build a program to tell them how much each sister and the duckbear should get.

Objectives:

• Create a program that lets the user enter the number of chocolate eggs gathered that day.
• Using / and %, compute how many eggs each sister should get and how many are left over for the

duckbear.
• Answer this question: What are three total egg counts where the duckbear gets more than each

sister does? You can use the program you created to help you find the answer.

UPDATING VARIABLES
The = operator is the assignment operator, and while it looks the same as the equals sign, it
does not imply that the two sides are equal. Instead, it indicates that some expression on the
right side should be evaluated and then stored in the variable shown on the left.

It is common for variables to be updated with new values over time. It is also common to
compute a variable’s new value based on its current value. For example, the following code
increases the value of a by 1:

int a = 5;
a = a + 1; // the variable a will have a value of 6 after running this line.

That second line will cause a to grow by 1, regardless of what was previously in it.

The above code shows how assignment differs from the mathematical idea of equality. In the
math world, a = a + 1 is an absurdity. No number exists that is equal to one more than itself.
But in C# code, statements that update a variable based on its current value are common.
There are even some shortcuts for it. Instead of a = a + 1;, we could do this instead:

a += 1;

UPDATING VARIABLES 57

This code is exactly equivalent to a = a + 1;, just shorter. The += operator is called a
compound assignment operator because it combines an operation (addition, in this case) with
a variable assignment. There are compound assignment operators for each of the binary
operators we have seen so far, including +=, -=, *=, /=, and %=:

int a = 0;
a += 5; // The equivalent of a = a + 5; (a is 5 after this line runs.)
a -= 2; // The equivalent of a = a – 2; (a is 3 after this line runs.)
a *= 4; // The equivalent of a = a * 4; (a is 12 after this line runs.)
a /= 2; // The equivalent of a = a / 2; (a is 6 after this line runs.)
a %= 2; // The equivalent of a = a % 2; (a is 0 after this line runs.)

Increment and Decrement Operators
Adding one to a variable is called incrementing the variable, and subtracting one is called
decrementing the variable. These two words are derived from the words increase and decrease.
They move the variable up a notch or down a notch.

Incrementing and decrementing are so common that there are specific operators for adding
one and subtracting one from a variable. These are the increment operator (++) and the
decrement operator (--). These operators are unary, requiring only a single operand to work,
but it must be a variable and not an expression. For example:

int a = 0;
a++; // The equivalent of a += 1; or a = a + 1;
a--; // The equivalent of a -= 1; or a = a - 1;

We will see many uses for these operators shortly.

Challenge The Dominion of Kings 100 XP
Three kings, Melik, Casik, and Balik, are sitting around a table, debating who has the greatest kingdom
among them. Each king rules an assortment of provinces, duchies, and estates. Collectively, they agree
to a point system that helps them judge whose kingdom is greatest: Every estate is worth 1 point, every
duchy is worth 3 points, and every province is worth 6 points. They just need a program that will allow
them to enter their current holdings and compute a point total.

Objectives:

• Create a program that allows users to enter how many provinces, duchies, and estates they have.
• Add up the user’s total score, giving 1 point per estate, 3 per duchy, and 6 per province.
• Display the point total to the user.

Prefix and Postfix Increment and Decrement Operators
The way we used the increment and decrement operators above is the way they are typically
used. However, assignment statements are also expressions and return the value assigned to
the variable. Or at least, it does for normal assignment (with the = operator) and compound
assignment operators (like += and *=).

The same thing is true with the ++ and -- operators, but the specifics are nuanced. These two
operators can be written before or after the modified variable. For example, you can write
either x++ or ++x to increment x. The first is called postfix notation, and the second is called
prefix notation. There is no meaningful difference between the two when written as a

58 LEVEL 7 MATH

complete statement (x++; or ++x;). But when you use them as part of an expression, x++
evaluates to the original value of x, while ++x evaluates to the updated value of x:

int x;

x = 5;
int y = ++x;

x = 5;
int z = x++;

Whether we do x++ or ++x, x is incremented and will have a value of 6 after each code block.
But in the first part, ++x will evaluate to 6 (increment first, then produce the new value of x),
so y will have a value of 6 as well. The second part, in contrast, evaluates to x’s original value
of 5, which is assigned to z, even though x is incremented to 6.

The same logic applies to the -- operator.

C# programmers rarely, if ever, use ++ and -- as a part of an expression. It is far more common
to use it as a standalone statement, so these nuances are rarely significant.

WORKING WITH DIFFERENT TYPES AND CASTING
Earlier, I said doing math that intermixes numeric types is problematic. Let’s address that now.

Most math operations are only defined for operands of the same type. For example, addition
is defined between two ints and two doubles but not between an int and a double.

But we often need to work with different data types in our programs. C# has a system of
conversions between types. It allows one type to be converted to another type to facilitate
mixing types.

There are two broad categories of conversions. A narrowing conversion risks losing data in the
conversion process. For example, converting a long to a byte could lose data if the number
is larger than what a byte can accurately represent. In contrast, a widening conversion does
not risk losing information. A long can represent everything a byte can represent, so there
is no risk in making the conversion.

Conversions can also be explicit or implicit. A programmer must specifically ask for an explicit
conversion to happen. An implicit conversion will occur automatically without the
programmer stating it.

As a general rule, narrowing conversions, which risk losing data, are explicit. Widening
conversions, which have no chance of losing data, are always implicit.

There are conversions defined among all of the numeric types in C#. When it is safe to do so,
these are implicit conversions. When it is not safe, these are explicit conversions. Consider
this code:

byte aByte = 3;
int anInt = aByte;

The simple expression aByte has a type of byte. Yet, it needs to be turned into an int to be
stored in the variable anInt. Converting from a byte to an int is a safe, widening
conversion, so the computer will make this conversion happen automatically. The code above
compiles without you needing to do anything fancy.

WORKING WITH DIFFERENT TYPES AND CASTING 59

If we are going the other way—an int to a byte—the conversion is not safe. To compile, we
need to specifically state that we want to use the conversion, knowing the risks involved. To
explicitly ask for a conversion, you use the casting operator, shown below:

int anInt = 3;
byte aByte = (byte)anInt;

The type to convert to is placed in parentheses before the expression to convert. This code
says, “I know anInt is an int, but I can deal with any consequences of turning this into a
byte, so please convert it.”

You are allowed to write out a specific request for an implicit conversion using this same
casting notation (for example, int anInt = (int)aByte;), but it isn’t strictly necessary.

There are conversions from every numeric type to every other numeric type in C#. When the
conversion is a safe, widening conversion, they are implicit. When the conversion is a
potentially dangerous narrowing conversion, they are explicit. For example, there is an
implicit conversion from sbyte to short, short to int, and int to long. Likewise, there
is an implicit conversion from byte to ushort, ushort to uint, and uint to ulong. There
is also an implicit conversion from all eight integer types to the floating-point types, but not
the other way around.

However, casting conversions are not defined between every possible type. For example, you
cannot do this:

string text = "0";
int number = (int)text; // DOES NOT WORK!

There is no conversion defined (explicit or implicit) that goes from string to int. We can
always fall back on Convert and do int number = Convert.ToInt32(text);.

Conversions and casting solve the two problems we noted earlier: math operations are not
defined for the “small” types, and intermixing types cause issues.

Consider this code:

short a = 2;
short b = 3;
int total = a + b; // a and b are converted to ints automatically.

Addition is not defined for the short type, but it does exist for the int type. The computer
will implicitly convert both to an int and use int’s + operation. This produces a result that is
an int, not a short, so if we want to get back to a short, we need to cast it:

short a = 2;
short b = 3;
short total = (short)(a + b);

That last line raises an important point: the casting operator has higher precedence than most
other operators. To let the addition happen first and the casting second, we must put the
addition in parentheses to force it to happen first. (We could have also separated the addition
and the casting conversion onto two separate lines.)

Casting and conversions also fix the second problem that intermixing types can cause.
Consider this code:

60 LEVEL 7 MATH

int amountDone = 20;
int amountToDo = 100;
double fractionDone = amountDone / amountToDo;

Since amountDone and amountToDo are both ints, the division is done as integer division,
giving you a value of 0. (Integer division ditches fractional values, and 0.2 becomes a simple
0.) This int value of 0 is then implicitly converted to a double (0.0). But that’s probably not
what was intended. If we convert either of the parts involved in the division to a double, then
the division happens with floating-point division instead:

int amountDone = 20;
int amountToDo = 100;
double fractionDone = (double)amountDone / amountToDo;

Now, the conversion of amountDone to a double is performed first. Division is not defined
between a double and an int, but it is defined between two doubles. The program knows
it can implicitly convert amountToDo to a double to facilitate that. So amountToDo is
“promoted” to a double, and now the division happens between two doubles using floating-
point division, and the result is 0.2. At this point, the expression is already a double, so no
additional conversion is needed to assign the value to fractionDone.

Keeping track of how complex expressions work can be tricky. It gets easier with practice, but
don’t be afraid to separate parts onto separate lines to make it easier to think through.

OVERFLOW AND ROUNDOFF ERROR
In the math world, numbers can get as big as they need to. Mathematically, integers don’t have
an upper limit. But our data types do. A byte cannot get bigger than 255, and an int cannot
represent the number 3 trillion. What happens when we surpass this limit?

Consider this code:

short a = 30000;
short b = 30000;
short sum = (short)(a + b); // Too big to fit into a short. What happens?

Mathematically speaking, it should be 60000, but the computer gives a value of -5536.

When an operation causes a value to go beyond what its type can represent, it is called
overflow. For integer types, this results in wrapping around back to the start of the range—0
for unsigned types and a large negative number for signed types. Stated differently,
int.MaxValue + 1 exactly equals int.MinValue. There is a danger in pushing the limits
of a data type: it can lead to weird results. The original Pac-Man game had this issue when you
go past level 255 (it must have been using a byte for the current level). The game went to an
undefined level 0, which was glitchy and unbeatable.

Performing a narrowing conversion with a cast is a fast way to cause overflow, so cast wisely.

With floating-point types, the behavior is a little different. Since all floating-point types have a
way to represent infinity, if you go too far up or too far down, the number will switch over to
the type’s positive or negative infinity representation. Math with infinities just results in more
infinities (or NaNs), so even though the behavior is different from integer types, the
consequences are just as significant.

Floating-point types have a second category of problems called roundoff error. The number
10000 can be correctly represented with a float, as can 0.00001. In the math world, you can

THE MATH AND MATHF CLASSES 61

safely add those two values together to get 10000.00001. But a float cannot. It only has six or
seven digits of precision and cannot distinguish 10000 from 10000.00001.

float a = 10000;
float b = 0.00001f;
float sum = a + b;

The result is rounded to 10000, and sum will still be 10000 after the addition. Roundoff error
is not usually a big deal, but occasionally, the lost digits accumulate, like when adding huge
piles of tiny numbers. You can sometimes sidestep this by using a more precise type. For
example, neither double nor decimal have trouble with this specific situation. But all three
have it eventually, just at different scales.

THE MATH AND MATHF CLASSES
C# also includes two classes with the job of helping you do common math operations. These
classes are called the Math class and the MathF class. We won’t cover everything contained
in them, but it is worth a brief overview.

π and e
The special, named numbers e and π are defined in Math so that you do not have to redefine
them yourself (and run the risk of making a typo). These two numbers are Math.E and
Math.PI respectively. For example, this code calculates the area of a circle (Area = πr2):

double area = Math.PI * radius * radius;

Powers and Square Roots
C# does not have a power operator in the same way that it has multiplication and addition.
But Math provides methods for doing both powers and square roots: the Pow and the Sqrt
method:

double x = 3.0;
double xSquared = Math.Pow(x, 2);

Pow is the first method that we have seen that needs two pieces of information to do its job.
The code above shows how to use these methods: everything goes into the parentheses,
separated by commas. Pow’s two pieces of information are the base and the power it is raised
to. So Math.Pow(x, 2) is the same as x2.

To do a square root, you use the Sqrt method:

double y = Math.Sqrt(xSquared);

Absolute Value
The absolute value of a number is merely the positive version of the number. The absolute
value of 3 is 3. The absolute value of -4 is 4. The Abs method computes absolute values:

int x = Math.Abs(-2); // Will be 2.

62 LEVEL 7 MATH

Trigonometric Functions
The Math class also includes trigonometric functions like sine, cosine, and tangent. It is
beyond this book’s scope to explain these trigonometric functions, but certain types of
programs (including games) use them heavily. If you need them, the Math class is where to
find them with the names Sin, Cos, and Tan. (There are others as well.) All expect angles in
radians, not degrees.

double y1 = Math.Sin(0);
double y2 = Math.Cos(0);

Min, Max, and Clamp
The Math class also has methods for returning the minimum and maximum of two numbers:

int smaller = Math.Min(2, 10);
int larger = Math.Max(2, 10);

Here, smaller will contain a value of 2 while larger will contain 10.

There is another related method that is convenient: Clamp. This allows you to provide a value
and a range. If the value is within the range, that value is returned. If that value is lower than
the range, it produces the low end of the range. If that value is higher than the range, it
produces the high end of the range:

health += 10;
health = Math.Clamp(health, 0, 100); // Keep it in the interval 0 to 100.

More
This is a slice of some of the most widely used Math class methods, but there is more. Explore
the choices when you have a chance so that you are familiar with the other options.

The MathF Class
The MathF class provides many of the same methods as Math but uses floats instead of
doubles. For example, Math’s Pow method expects doubles as inputs and returns a double
as a result. You can cast that result to a float, but MathF makes casting unnecessary:

float x = 3;
float xSquared = MathF.Pow(x, 2);

LEVEL 8
CONSOLE 2.0

 Speedrun
• The Console class can write a line without wrapping (Write), wait for just a single keypress

(ReadKey), change colors (ForegroundColor, BackgroundColor), clear the entire console
window (Clear), change the window title (Title), and play retro 80’s beep sounds (Beep).

• Escape sequences start with a \ and tell the computer to interpret the next letter differently. \n is
a new line, \t is a tab, \" is a quote within a string literal.

• An @ before a string ignores any would-be escape sequences: @"C:\Users\Me\File.txt".
• A $ before a string means curly braces contain code: $"a:{a} sum:{a+b}".

In this level, we will flesh out our knowledge of the console and learn some tricks to make
working with text and the console window easier and more exciting. While a console window
isn’t as flashy as a GUI or a web page, it doesn’t have to be boring.

THE CONSOLE CLASS
We’ve been using the Console class since our very first Hello World program, but it is time
we dug deeper into it to see what else it is capable of. Console has many methods and
provides a few of its own variables (technically properties, as we will see in Level 20) that we
can use to do some nifty things.

The Write Method
Aside from Console.WriteLine, another method called Write, does all the same stuff as
WriteLine, without jumping to the following line when it finishes. There are many uses for
this, but one I like is being able to ask the user a question and letting them answer on the same
line:

Console.Write("What is your name, human? "); // Notice the space at the end.
string userName = Console.ReadLine();

The resulting program looks like this:

64 LEVEL 8 CONSOLE 2.0

What is your name, human? RB

The Write method is also helpful when assembling many small bits of text into a single line.

The ReadKey Method
The Console.ReadKey method does not wait for the user to push enter before completing.
It waits for only a single keypress. So if you want to do something like “Press any key to
continue…”, you can use Console.ReadKey:

Console.WriteLine("Press any key when you're ready to begin.");
Console.ReadKey();

This code has a small problem. If a letter is typed, that letter will still show up on the screen.
There is a way around this. There are two versions of the ReadKey method (called
“overloads,” but we’ll cover that in more detail in Level 13). One version, shown above, has no
inputs. The other version has an input whose type is bool, which indicates whether the text
should be “intercepted” or not. If it is intercepted, it will not be displayed in the console
window. Using this version looks like the following:

Console.WriteLine("Press any key when you're ready to begin.");
Console.ReadKey(true);

Changing Colors
The next few items we will talk about are not methods but properties. There are important
differences between properties and variables, but for now, it is reasonable for us to just think
of them as though they are variables.

The Console class provides variables that store the colors it uses for displaying text. We’re
not stuck with just black and white! This is best illustrated with an example:

Console.BackgroundColor = ConsoleColor.Yellow;
Console.ForegroundColor = ConsoleColor.Black;

After assigning new values to these two variables, the console will begin using black text on a
yellow background. BackgroundColor and ForegroundColor are both variables instead
of methods, so we don’t use parentheses as we have done in the past. These variables belong
to the Console class, so we access them through Console.VariableName instead of just
by variable name like other variables we have used. These lines assign a new value to those
variables, though we have never seen anything like ConsoleColor.Yellow or
ConsoleColor.Black before. ConsoleColor is an enumeration, which we will learn
more about in Level 16. The short version is that an enumeration defines a set of values in a
collection and gives each a name. Yellow and Black are the names of two items in the
ConsoleColor collection.

The Clear Method
After changing the console’s background color, you may notice that it doesn’t change the
window’s entire background, just the background of the new letters you write. You can use
Console’s Clear method to wipe out all text on the screen and change the entire
background to the newly set background color:

Console.Clear();

SHARPENING YOUR STRING SKILLS 65

For better or worse, this does wipe out all the text currently on the screen (its primary
objective, in truth), so you will want to ensure you do it only at the right moments.

Changing the Window Title
Console also has a Title variable, which will change the text displayed in the console
window's title bar. Its type is a string.

Console.Title = "Hello, World!";

Just about anything is better than the default name, which is usually nonsense like “C:\Users\
RB\Source\Repos\HelloWorld\HelloWorld\bin\Debug\net6.0\HelloWorld.exe”.

The Beep Method
The Console class can even beep! (Before you get too excited, the only sound the console
window can make is a retro 80’s square wave.) The Beep method makes the beep sound:

Console.Beep();

If you’re musically inclined, there is a version that lets you choose both frequency and
duration:

Console.Beep(440, 1000);

This Beep method needs two pieces of information to do its job. The first item is the
frequency. The higher the number, the higher the pitch, but 440 is a nice middle pitch. (The
Internet can tell you which frequencies belong to which notes.) The second piece of
information is the duration, measured in milliseconds (1000 is a full second, 500 is half a
second, etc.). You could imagine using Beep to play a simple melody, and indeed, some
people have spent a lot of time doing just this and posting their code to the Internet.

SHARPENING YOUR STRING SKILLS
Let’s turn our attention to a few features of strings to make them more powerful.

Escape Sequences
Here is a chilling challenge: how do you display a quote mark? This does not work:

Console.WriteLine("""); // ERROR: Bad quotation marks!

The compiler sees the first double quote as the start of a string and the second as the end. The
third begins another string that never ends, and we get compiler errors.

An escape sequence is a sequence of characters that do not mean what they would usually
indicate. In C#, you start escape sequences with the backslash character (\), located above
the <Enter> key on most keyboards. A backslash followed by a double quote (\") instructs
the compiler to interpret the character as a literal quote character within the string instead of
interpreting it as the end of the string:

Console.WriteLine("\"");

66 LEVEL 8 CONSOLE 2.0

The compiler sees the first quote mark as the string’s beginning, the middle \" as a quote
character within the text, and the third as the end of the string.

A quotation mark is not the only character you can escape. Here are a few other useful ones:
\t is a tab character, \n is a new line character (move down to the following line), and \r is a
carriage return (go back to the start of the line). In the console window, going down a line with
\n also goes back to the beginning of the line.

So what if we want to have a literal \ character in a string? There’s an escape sequence for the
escape character as well: \\. This allows you to include backslashes in your strings:

Console.WriteLine("C:\\Users\\RB\\Desktop\\MyFile.txt");

That code displays the following:

C:\Users\RB\Desktop\MyFile.txt

In some instances, you do not care to do an escape sequence, and the extra slashes to escape
everything are just in your way. You can put the @ symbol before the text (called a verbatim
string literal) to instruct the compiler to treat everything exactly as it looks:

Console.WriteLine(@"C:\Users\RB\Desktop\MyFile.txt");

String Interpolation
It is common to mix simple expressions among fixed text. For example:

Console.Write("My favorite number is " + myFavoriteNumber + ".");

This code uses the + operator with strings to combine multiple strings (often called string
concatenation instead of addition). We first saw this in Level 3, and it is a valuable tool. But
with all of the different quotes and plusses, it can get hard to read. String interpolation allows
you to embed expressions within a string by surrounding it with curly braces:

Console.WriteLine($"My favorite number is {myFavoriteNumber}.");

To use string interpolation, you put a $ before the string begins. Within the string, enclose any
expressions you want to evaluate inside of curly braces like myFavoriteNumber is above. It
becomes a fill-in-the-blank game for your program to perform. Each expression is evaluated
to produce its result. That result is then turned into a string and placed in the overall text.

String interpolation usually gives you much more readable code, but be wary of many long
expressions embedded into your text. Sometimes, it is better to compute a result and store it
in a variable first.

You can combine string interpolation and verbatim strings by using $ and @ in either order.

Alignment
While string interpolation is powerful, it is only the beginning. Two other features make string
interpolation even better: alignment and formatting.

Alignment lets you display a string with a specific preferred width. Blank space is added before
the value to reach the desired width if needed. Alignment is useful if you structure text in a
table and need things to line up horizontally. To specify a preferred width, place a comma and
the desired width in the curly braces after your expression to evaluate:

SHARPENING YOUR STRING SKILLS 67

string name1 = Console.ReadLine();
string name2 = Console.ReadLine();
Console.WriteLine($"#1: {name1,20}");
Console.WriteLine($"#2: {name2,20}");

If my two names were Steve and Captain America, the output would be:

#1: Steve
#2: Captain America

This code reserves 20 characters for the name’s display. If the length is less than 20, it adds
whitespace before it to achieve the desired width.

If you want the whitespace to be after the word, use a negative number:

Console.WriteLine($"{name1,-20} - 1");
Console.WriteLine($"{name2,-20} - 2");

This has the following output:

Steve - 1
Captain America - 2

There are two notable limitations to preferred widths. First, there is no convenient way to
center the text. Second, if the text you are writing is longer than the preferred width, it won’t
truncate your text, but just keep writing the characters, which will mess up your columns. You
could write code to do either, but there is no special syntax to do it automatically.

Formatting
With interpolated strings, you can also perform formatting. Formatting allows you to provide
hints or guidelines about how you want to display data. Formatting is a deep subject that we
won’t exhaustively cover here, but let’s look at a few examples.

You may have seen that when you display a floating-point number, it writes out lots of digits.
For example, Console.WriteLine(Math.PI); displays 3.141592653589793. You
often don’t care about all those digits and would rather round. The following instructs the
string interpolation to write the number with three digits after the decimal place:

Console.WriteLine($"{Math.PI:0.000}");

To format something, after the expression, put a colon and then a format string. This also
comes after the preferred width if you use both. This displays 3.142. It even rounds!

Any 0 in the format indicates that you want a number to appear there even if the number isn’t
strictly necessary. For example, using a format string of 000.000 with the number 42 will
display 042.000.

In contrast, a # will leave a place for a digit but will not display a non-significant 0 (a leading
or trailing 0):

Console.WriteLine($"{42:#.##}");// Displays "42"
Console.WriteLine($"{42.1234:#.##}");// Displays "42.12"

You can also use the % symbol to make a number be represented as a percent instead of a
fractional value. For example:

68 LEVEL 8 CONSOLE 2.0

float currentHealth = 4;
float maxHealth = 9;
Console.WriteLine($"{currentHealth/maxHealth:0.0%}"); // Displays "44.4%"

Several shortcut formats exist. For example, using just a simple P for the format is equivalent
to 0.00%, and P1 is equal to 0.0%. Similarly, a format string of F is the same as 0.00, while
F5 is the same as 0.00000.

You can use quite a few other symbols for format strings, but that is enough to give us a basic
toolset to work with.

Challenge The Defense of Consolas 200 XP
The Uncoded One has begun an assault on the city of Consolas; the
situation is dire. From a moving airship called the Manticore,
massive fireballs capable of destroying city blocks are being
catapulted into the city.

The city is arranged in blocks, numbered like a chessboard.

The city’s only defense is a movable magical barrier, operated by a
squad of four that can protect a single city block by putting
themselves in each of the target’s four adjacent blocks, as shown in
the picture to the right.

For example, to protect the city block at (Row 6, Column 5), the
crew deploys themselves to (Row 6, Column 4), (Row 5, Column 5),
(Row 6, Column 6), and (Row7, Column 5).

The good news is that if we can compute the deployment locations fast enough, the crew can be
deployed around the target in time to prevent catastrophic damage to the city for as long as the siege
lasts. The City of Consolas needs a program to tell the squad where to deploy, given the anticipated
target. Something like this:

Target Row? 6
Target Column? 5
Deploy to:
(6, 4)
(5, 5)
(6, 6)
(7, 5)

Objectives:

• Ask the user for the target row and column.
• Compute the neighboring rows and columns of where to deploy the squad.
• Display the deployment instructions in a different color of your choosing.
• Change the window title to be “Defense of Consolas”.
• Play a sound with Console.Beep when the results have been computed and displayed.

This is a preview. These pages have been

excluded from the preview.

GLOSSARY

.NET
The ecosystem that C# is a part of. It encompasses the .NET
SDK, the compiler, the Common Language Runtime,
Common Intermediate Language, the Base Class Library,
and app models for building specific types of applications.
(Levels 1 and 50.)

.NET Core
The original name for the current cutting-edge .NET
implementation. After .NET Core 3.1, this became simply
.NET. (Level 50.)

.NET Framework
The original implementation of .NET that worked only on
Windows. This flavor of .NET is still used, but most new
development happens on the more modern .NET
implementation. (Level 50.)

.NET Multi-platform App UI
The evolution of Xamarin Forms and an upcoming cross-
platform UI framework for mobile and desktop apps.

0-based Indexing
A scheme where indexes for an array or other collection type
start with item number 0 instead of 1. C# uses this for almost
everything.

Abstract Class
A class that you cannot create instances of; you can only
create instances of classes derived from it. Only abstract
classes can contain abstract members. (Level 26.)

Abstract Method
A method declaration that does not provide an
implementation or body. Abstract methods can only be
defined in abstract classes. Derived classes that are not

abstract must provide an implementation of the method.
(Level 26.)

Abstraction
The object-oriented concept where if a class keeps its inner
workings private, those internal workings won’t matter to
the outside world. It also allows those inner workings to
change without affecting the rest of the program. (Level 19.)

Accessibility Level
Types and their members indicate how broadly accessible
or visible they are. The compiler will ensure that other code
uses it in a compliant manner. Making something more
hidden gives you more flexibility to change it later without
significantly affecting the rest of the program. Making
something less hidden allows it to be used in more places.
The private accessibility level means something can only be
used within the type it is defined in. The public
accessibility level means it can be used anywhere and is
intended for general reuse. The protected accessibility
level indicates that something can only be used in the class
it is defined in or derived classes. The internal
accessibility level indicates that it can be used in the
assembly it is defined in, but not another. The private
protected accessibility level indicates that it can only be
used in derived classes in the same assembly. The
protected internal accessibility level can be used in
derived classes or the assembly it is defined in. (Levels 19,
25, and 47.)

Accessibility Modifier
See accessibility level.

Ahead-of-Time Compilation
C# code is compiled to CIL instructions by the C# compiler
and then turned into hardware-ready binary instructions as
the program runs with the JIT compiler. Ahead-of-time
compilation moves the JIT compiler’s work to the same time
as the main C# compiler. This makes the code operating

GLOSSARY 453

system- and hardware architecture-specific but speeds up
initialization.

Anonymous Type
A class without a formal type name, created with the new
keyword and a list of properties. E.g., new { A = 1, B =
2 }. They are immutable. (Level 20.)

AOT Compilation
See ahead-of-time compilation.

App Model
One of several frameworks that are a part of .NET, intended
to make the development of a specific type of application
(web, desktop, mobile, etc.) easy. (Level 50.)

Architecture
This word has many meanings in software development.
For hardware architecture, see Instruction Set Architecture.
For software architecture, see object-oriented design.

Argument
The value supplied to a method for one of its parameters.

Arm
A single branch of a switch. (Level 10.)

Array
A collection of multiple values of the same type placed
together in a list-like structure. (Level 12.)

ASP.NET
An app model for building web-based applications. (Level
50.)

Assembler
A simple program that translates assembly instructions into
binary instructions. (Level 49.)

Assembly
Represents a single block of redistributable code used for
deployment, security, and versioning. A .dll or .exe file. Each
project is compiled into its own assembly. See also project
and solution. (Level 3.)

Assembly Language
A low-level programming language where each instruction
corresponds directly to a binary instruction the computer
can run. Essentially, a human-readable form of binary.
(Level 49.)

Assignment
The process of placing a value in a variable. (Level 5.)

Associative Array
See dictionary.

Associativity
See operator associativity.

Asynchronous Programming
Allowing work to be scheduled for later after some other task
finishes to prevent threads from getting stuck waiting. (Level
44.)

Attribute
A feature for attaching metadata to code elements, which
can then be used by the compiler and other code analysis
tools. (Level 47.)

Auto-Property
A type of property where the compiler automatically
generates the backing field and basic get and set logic.
(Level 20.)

Automatic Memory Management
See managed memory.

Awaitable
Any type that can be used with the await keyword. Task
and Task<T> are the most common. (Level 44.)

Backing Field
A field that a property uses as a part of its getter and setter.
(Level 20.)

Base Class
In inheritance, the class that another is built upon. The
derived class inherits all members except constructors from
the base class. Also called a superclass or a parent class. See
also inheritance, derived class, and sealed class. (Level 25.)

Base Class Library
The standard library available to all programs made in C#
and other .NET languages. (Level 50.)

BCL
See Base Class Library.

Binary
Composed of two things. Binary numbers use only 0’s and
1’s. (Level 3.)

454 GLOSSARY

Binary Code
The executable instructions that computers work with to do
things. All programs are built out of binary code. (Levels 3
and 49.)

Binary Instructions
See binary code.

Binary Literal
A literal that specifies an integer in binary and is preceded
by the marker 0b: 0b00101001. (Level 6.)

Binary Operator
An operator that works on two operands. Addition and
subtraction are two examples. (Level 7.)

Bit
A single binary digit. A 0 or a 1. (Level 6.)

Bit Field
Compactly storing multiple related Boolean values, using
only one bit per Boolean value. (Level 47.)

Bit Manipulation
Using specific operators to work with the individual bits of a
data element. (Level 47.)

Bitwise Operator
One of several operators used for bit manipulation,
including bitwise logical operators and bitshift operators.
(Level 47.)

Block
A section of code demarcated with curly braces, typically
containing many statements in sequence. (Level 9.)

Block Body
One of two styles of defining the body of a method or other
member that uses a block. See also expression body. (Level
13.)

Boolean
Pertaining to truth values. A Boolean value can be either
true or false. Used heavily in decision making and looping,
and represented with the bool type in C#. (Level 6.)

Boxing
When a value type is removed from its regular place and
placed elsewhere on the heap, accessible through a
reference. (Level 28.)

Breakpoint
The marking of a location in code where the debugger
should suspend execution so that you can inspect its state.
(Bonus Level C.)

Built-In Type
One of a handful of types that the C# compiler knows a lot
about and provides shortcuts to make working with them
easy. These types have their own keywords, such as int,
string, or bool. (Level 6.)

Byte
A block of eight bits. (Level 6.)

C++
A powerful all-purpose programming language. C++’s
syntax inspired C#’s syntax. (Level 1.)

Call
See method call.

Callback
A method or chunk of code that is scheduled to happen after
some other task completes. (Level 44.)

Casting
See typecasting.

Catch Block
A chunk of code intended to resolve an error produced by
another part of the code. (Level 35.)

Character
A single letter or symbol. Represented by the char type.
(Level 6.)

Checked Context
A section of code wherein mathematical overflow will throw
an exception instead of wrapping around. An unchecked
context is the default. (Level 47.)

CIL
See Common Intermediate Language.

Class
A category of types, formed by combining fields (data) and
methods (operations on that data). The most versatile type
you can define. Creates a blueprint used by instances of the
type. All classes are reference types. See also struct, type,
record, and object. (Level 18.)

This is a preview. These pages have been

excluded from the preview.

INDEX

Symbols
!= operator, 74
- operator, 51
-- operator, 57
π, 61
! operator, 76, 177
#define, 387
#elif, 386
#else, 386
#endif, 386
#endregion, 385
#error, 385
#if, 386
#region, 385
#undef, 387
#warning, 385
& operator, 369, 382
&& operator, 76
&= operator, 383
* operator, 51, 368
.. operator, 93
/ operator, 51
?. operator, 176
?? operator, 177
?[] operator, 176
@ symbol, 66
[] operator, 90
^ operator, 93, 382
^= operator, 383
| operator, 382
|| operator, 76
|= operator, 383
~ operator, 382
~= operator, 383
+ operator, 51
< operator, 74
<< operator, 381
<<= operator, 383

<= operator, 74
== operator, 70
=> operator, 81, 304
> operator, 74
-> operator, 369
>= operator, 74
>> operator, 381
>>= operator, 383
.cs file, 15
.csproj file, 15, 409
.dll, 456
.NET, 9, 10, 404, 452
.NET Core, 405, 452
.NET Framework, 404, 452
.NET MAUI, 407
.NET Multi-platform App User Interface, 407
.sln file, 409

0
0-based indexing, 91, 452

A
absolute value, 61
abstract class, 209, 452
abstract keyword, 210
abstract method, 209, 452
abstraction, 159, 452
accessibility level, 156, 452
accessibility modifier, 156
acquiring a lock, 349
Action (System), 294
add keyword, 301
addition, 51
Address Of operator, 369
ahead-of-time compilation, 403, 452
algorithm, 51
alias, 266
alignment, 66

INDEX 469

allocating memory, 110
and keyword, 321
and pattern, 321
Android, 10, 407
anonymous type, 169, 453
AOT compilation. See ahead-of-time compilation
app model, 407, 453
architecture, 402, 453
argument, 102, 453
arm, 453
array, 90, 453
as keyword, 205
ascending keyword, 336
ASP.NET, 407, 453
assembler, 401, 453
assembly, 401, 453
assembly language, 453
assignment, 453, 460, 464
associative array, 453
async keyword, 355
asynchronous programming, 351, 453
attribute, 376, 453

defining, 378
auto property, 166
auto-implemented property, 166
automatic memory management, 122, 453
auto-property, 453
await keyword, 355
awaitable, 358, 453

B
backing field, 165, 453
backing store, 165
base class, 199, 453
Base Class Library, 10, 22, 248, 403, 406, 453
base keyword, 203
BCL. See Base Class Library
binary, 400, 453, 454
binary literal, 454
binary operator, 51
BinaryReader (System.IO), 314
BinaryWriter (System.IO), 314
binding, 20
bit, 38, 400, 454
bit field, 380, 454
bit manipulation, 380, 454
bitshift operator, 381
bitwise operator, 454
Blazor, 407
block, 454
block body, 105, 454
block scope, 72
block statement, 70
body. See method body
bool, 45
Boolean, 454
Boolean (System), 225
boxing, 226, 454
boxing conversion, 226
break keyword, 87
breakpoint, 449, 454

conditions and actions, 451
build configuration, 27, 409
built-in type, 38, 454
built-in type alias, 225
by keyword, 339
byte, 38, 40, 400, 454

Byte (System), 225

C
C, 10
C#, 9
C++, 10, 454
callback, 352, 454
camelCase, 37
captured variable, 306
case guard, 319
case keyword, 81
casting, 59, 454
catch block, 454
catching exceptions, 281
char, 42
Char (System), 225
character, 454
checked context, 391, 454
checked keyword, 391
child class, 199
CIL, 402, 405
clamp, 62
class, 21, 130, 144, 145, 454

compared to structs, 221
creating instances, 147
default field values, 149
defining, 145
defining constructors, 148
sealing, 205

class keyword, 145
class library, 406
clause (query expressions), 334
ClickOnce, 411
closure, 306, 455
CLR. See Common Language Runtime
Code Editor window, 18
code library, 394
code map, 20
Code Window, 436, 455
collaborator, 181
collection initializer syntax, 93, 455
command-line arguments, 387, 455
comment, 29, 455
Common Intermediate Language, 402, 405, 455
Common Language Runtime, 402, 405, 455
compiler, 18, 401, 455
compiler error, 27, 442, 455

suggestions for fixing, 443
compiler warning, 442, 455
compile-time constant, 272
compiling, 18, 399
composite type, 138, 455
composition, 138
compound assignment operator, 57, 455
concrete class, 210, 455
concurrency, 343, 455
concurrency issue, 347
condition, 70
conditional compilation symbol, 386, 455
conditional operator, 77
const, 375
const keyword, 375
constant, 375, 455
constant pattern, 317
constructor, 147, 148, 455

default parameterless constructor, 455
parameterless, 150

context switch, 344, 455

470 INDEX
continuation clause, 339
continue keyword, 87
contravariant, 390
Convert (System), 47
cosine, 62
covariance, 390
CRC card, 455
CRC cards, 181
critical section, 348, 456
curly braces, 456
custom conversion, 329, 456

D
dangling pointer, 456
dangling reference, 122
data structure, 456
DateTime (System), 250
deadlock, 349, 456
deallocating memory, 110
debug, 456
debugger, 447, 456
debugging, 27, 447
decimal, 43
Decimal (System), 225
declaration, 98, 456
declaration pattern, 318
deconstruction, 141, 229, 456
deconstructor, 276
decrement, 456
decrement operator, 57
default keyword, 81, 240
default operator, 240
deferred execution, 340, 456
delegate, 291, 456
delegate chain, 295
delegate keyword, 292
dependency, 456
dependency (project), 394
derived class, 199, 456
deriving from classes, 199
descending keyword, 336
deserialization, 456
design, 144, 178, 456
desktop development, 407
dictionary, 456
Dictionary<TKey, TValue> (System.Collections.Generic), 257
digit separator, 41, 456
directed graph, 117
Directory (System.IO), 312
discard, 142, 456
discard pattern, 317
Discord, 5
divide and conquer, 456
division, 51
division by zero, 55, 456
DLLImport (System.Runtime.InteropServices), 372
do/while loop, 86
dot operator, 20
dotnet command-line interface, 13, 412
double, 43
Double (System), 225
downcasting, 204
dynamic keyword, 362
dynamic object, 361, 457
dynamic objects, 361
dynamic type checking, 361, 457
DynamicObject (System.Dynamic), 364

E
E notation, 457
early exit, 104, 457
Edit and Continue, 451
else if statement, 73
else statement, 73
encapsulation, 146, 457
entry point, 23, 268, 457
enum. See enumeration
enum keyword, 133
enumeration, 132, 457
equality operator, 70
equals keyword, 338
Equals method, 200
Error List, 440, 457
escape sequence, 65
evaluation, 457
event, 296, 457

custom accessors, 301
leak, 300
null, 299
raising, 297
subscribing, 298

event keyword, 297
event leak, 457
EventHandler (System), 300
EventHandler<TEventArgs> (System), 300
exception, 280, 457

guidelines for using, 285
rethrow, 288

Exception (System), 281
exception filter, 289
exception handler, 281
EXE, 457
ExpandoObject (System.Dynamic), 363
explicit, 457
explicit conversion, 58
explicit keyword, 329
exponent, 61
expression, 24, 457

evaluating, 24
expression body, 105, 457
extending classes, 199
extension method, 457
extern keyword, 371

F
F#, 10, 402, 405
factory method, 172
false keyword, 45
field, 145, 457

default value, 149
initialization, 150

File (System.IO), 308
files, 308
FileStream (System.IO), 314
finally block, 284
finally keyword, 284
fire (event), 297
fixed statement, 369, 457
fixed-size array, 370, 457
fixed-size buffer, 370
flags enumeration, 383
float, 43
floating-point division, 54, 458
floating-point type, 43, 458

INDEX 471

for loop, 86
frame. See stack frame
framework-dependent deployment, 412, 458
from clause, 334
from keyword, 334
fully qualified name, 264, 265, 458
Func (System), 294
function, 98, 458

G
game development, 408
garbage collection, 122, 406, 458
garbage collector, 123
generic method, 238
generic type, 233, 236, 458

inheritance, 237
generic type argument, 236, 458
generic type constraint, 458
generic type constraints, 238
generic type parameter, 236, 458

multiple, 237
generic variance, 389, 458
generics, 233

constraints, 238
inheritance, 389
motivation for, 233

get keyword, 164
GetHashCode method, 258
get-only property, 167
getter, 157, 164, 458
GetType method, 204
global keyword, 266
global namespace, 264, 458
global state, 171, 458
global using directive, 266
goto keyword, 388
graph, 117
group by clause, 339
guard expression, 319
Guid (System), 252

H
hash code, 258, 458
heap, 115, 458
hexadecimal, 458
hexadecimal literal, 42

I
IAsyncEnumerable<T> (System.Collections.Generic), 359,

375
IDE. See integrated development environment
identifier, 20
IDisposable (System), 384
IDynamicMetaObjectProvider (System.Dynamic), 363
IDynamicMetaObjectProvider interface, 362
IEnumerable<T> (System.Collections.Generic), 256, 334
if statement, 69
IL, 402
immutability, 167, 459
implicit, 459
implicit conversion, 58
implicit keyword, 329
in keyword, 276

increment, 459
increment operator, 57
index, 91, 459
index initializer syntax, 328
indexer, 327, 459
indexer operator, 91
indirection operator, 369
infinite loop, 85, 459
infinity, 54
information hiding, 155
inheritance, 198, 459

constructors, 202
inheritance hierarchy, 202
inheritance relationship, 199
init keyword, 168
initialization, 459
inner exception, 289
input parameter, 276
instance, 130, 145, 459
instance variable. See field
instruction set architecture, 401, 459
int type, 34
Int16 (System), 225
Int32 (System), 225
Int64 (System), 225
integer, 34
integer division, 54, 459
integer type, 39
integral type, 39, 459
integrated development environment, 11, 459
IntelliSense, 437, 459
interface, 212, 459

and base classes, 215
default methods, 216
defining, 213
explicit implementation, 215
implementing, 214

interface keyword, 213
internal keyword, 160
into clause, 339
into keyword, 339
iOS, 10
is keyword, 205, 322
ISA, 402
iterator, 374, 460

J
jagged array, 96, 460
Java, 10, 460
JetBrains Rider, 12
JIT compiler, 403
jitter, 403
join clause, 338
join keyword, 338
Just-in-Time compilation, 406
Just-in-Time compiler, 403, 460

K
keyword, 26, 460

L
label, 388
labeled statement, 388
lambda expression, 303, 460

472 INDEX
lambda statement, 305
Language Integrated Query, 333, 460
lazy evaluation, 460
let clause, 339
let keyword, 339
library, 315, 394, 406
LINQ, 333
LINQ to SQL, 341
Linux, 10
List<T> (System.Collections.Generic), 253
listener, 297
literal, 20
literal value, 460
local function, 98, 307, 460
local variable, 101, 460
lock keyword, 348
logical operator, 76, 460
long, 40
loop, 84, 460
lowerCamelCase, 37

M
macOS, 10
main method, 23, 457, 460
Main method, 23, 268
managed code, 460
managed memory, 460
math, 50
Math (System), 61
MathF (System), 62
MAUI, 407
maximum, 62
member, 20, 460
member access operator, 20
memory address, 32, 461
memory allocation, 461
memory leak, 122, 461
memory management, 109
memory safety, 406, 461
method, 21, 97, 98, 271, 461

calling, 99
calling methods, 21
return type, 98
returning data, 21
scope, 100

method body, 98
method call, 21, 461
method call syntax, 336, 461
method group, 105, 461
method implementation, 461
method invocation, 21
method overload, 104, 461
method scope, 72
method signature, 461
Microsoft Developer Network, 431
minimum, 62
mobile development, 407
Mono, 404, 461
MonoGame, 408
MSBuild, 409
MSIL, 402
MulticastDelegate (System), 295
multi-dimensional array, 95, 461
multiplication, 51
multi-threading, 343, 461
mutex, 348
mutual exclusion, 348, 461
MVC, 407

N
name, 20
name binding, 20
name collision, 461
name conflict, 266
name hiding, 151, 152, 461
named argument, 272, 461
nameof operator, 379
namespace, 21, 264, 446, 461
namespace keyword, 267
namespaces, 267
NaN, 54, 462
narrowing conversion, 58, 462
native code, 367, 462
native integer types, 371
nested pattern, 320
nested type, 379
nesting, 77, 88, 462
new keyword, 210
new method, 210
nint, 371
not keyword, 321
not pattern, 321
noun extraction, 180, 462
NuGet, 396
NuGet Package Manager, 462
nuint, 371
null, 92
null check, 176
null conditional operator, 176
null keyword, 174
null reference, 174, 462
nullable type, 462
Nullable<T> (System), 259
null-coalescing operator, 177

O
object, 130, 144, 199, 462
Object (System), 199, 225
object initializer syntax, 168
object keyword, 199
object-initializer syntax, 462
object-oriented design, 144, 153, 178, 462

rules, 184
object-oriented programming, 129, 462
observer, 297
ObsoleteAttribute (System), 376
on keyword, 338
operation, 50, 462
operator, 50, 462

binary, 454
ternary, 466
unary, 466

operator associativity, 52, 462
operator keyword, 326
operator overloading, 325, 462
operator precedence, 52, 462
optional arguments, 271
optional parameter, 271, 462
or keyword, 321
or pattern, 321
order of operations, 52, 462
orderby clause, 336
orderby keyword, 336
out keyword, 275, 390
out-of-order execution, 462

INDEX 473

output parameter, 275
overflow, 60, 462
overload. See method overload
overload resolution, 105, 463
overloading, 463

P
P/Invoke, 371
package, 396, 463
package manager, 396
parameter, 101, 149, 463

variable number of, 272
parameterful property, 327
parameterless constructor, 150
params keyword, 272
parent class. See base class
parentheses, 463
parse, 463
Parse methods, 48
parsing, 48
partial class, 387, 463
partial keyword, 387
partial method, 388
PascalCase, 37
passing, 102
passing by reference, 273, 463
passing by value, 273
Path (System.IO), 313
pattern matching, 82, 316, 463
pi, 61
pinning, 369
Platform Invocation Services, 371, 463
pointer member access operator, 369
pointer type, 368, 463
polymorphism, 207, 463
positional pattern, 321
postfix notation, 57
power (math), 61
PowerShell, 10
Predicate (System), 294
prefix notation, 57
preprocessor directive, 385, 463
primitive type. See built-in type
print debugging, 448, 463
private keyword, 156
private protected accessibility level, 380
Program class, 23
program order, 464
programming language, 9, 401
project, 464
project configuration, 15
project template, 15
Properties Window, 440
property, 163, 464
property pattern, 319
protected accessibility modifier, 205
protected internal accessibility level, 380
protected keyword, 205
pseudo-random number generation, 249
public keyword, 156
publish profile, 410
publishing, 409

Q
query expression, 333, 464
query syntax, 464

Quick Action, 438

R
raise (event), 297
Random (System), 249
range operator, 93
range variable, 335
Razor Pages, 407
readonly keyword, 167
read-only property, 167
record, 228, 464

struct-based, 231
rectangular array, 96, 464
recursion, 107, 464, See recursion
ref keyword, 274
ref local variable, 276
ref return, 276
refactor, 464
refactoring, 189
reference, 116, 464
reference semantics, 121, 464
reference type, 118, 464
reflection, 378, 464
relational operator, 74, 464
remainder, 55
remove keyword, 301
requirements, 179, 464
responsibility, 181
rethrowing exceptions, 288
return, 21, 26, 103, 464
return keyword, 103
return type, 464
returning early, 104
Rider. See JetBrains Rider
roundoff error, 60, 464
runtime, 10, 402, 464

S
sbyte, 40
SByte (System), 225
scheduler, 344, 465
scope, 72, 100, 465
SDK. See Software Development Kit
sealed class, 205, 465
sealed keyword, 205
seed, 249
select clause, 334
select keyword, 334
self-contained deployment, 412
serialization, 310
set keyword, 164
setter, 157, 164
short, 40
SignalR, 407
signed type, 40, 465
sine, 62
Single (System), 225
sizeof operator, 370
software design, 144, 178
Software Development Kit, 10, 406
solution, 465
Solution Explorer, 18, 439, 465
source code, 15, 465
Span<T> (System), 276
square brackets, 465

474 INDEX
square root, 61
stack, 110, 465
stack allocation, 370, 465
stack frame, 111, 465
stack trace, 288, 465
stackalloc keyword, 370
standard library, 406, 465
statement, 23, 465
static, 170, 465
static class, 173
static constructor, 172
static field, 170
static keyword, 170
static method, 172
static property, 171
static type checking, 361, 465
static using directive, 266
stream, 313
Stream (System.IO), 314
StreamWriter (System.IO), 314
string, 42, 465
String (System), 225
string formatting, 67
string interpolation, 66
string manipulation, 310
string type, 20

string literal, 20
StringBuilder (System.Text), 260
struct, 219, 465

compared to classes, 221
constructors, 220
memory, 220

struct keyword, 219
subclass, 199
subtraction, 51
superclass, 199
switch, 79, 466
switch arm, 79
switch expression, 81

guard, 319
switch keyword, 80
switch statement, 80
symbol, 386
synchronization context, 357
synchronization issue, 347
synchronous programming, 351, 466
syntax, 19
System namespace, 21

T
tangent, 62
task, 353, 466
Task (System.Threading.Tasks), 353
Task<T> (System.Threading.Tasks), 353
ternary operator, 51, 77
this keyword, 152
thread, 343, 466
Thread (System.Threading), 344
thread pool, 356, 466
thread safety, 347, 348, 466
Thread.Sleep, 346
threading, 343
threading issue, 347
ThreadPool (System.Threading), 356
throw keyword, 283
throwing exceptions, 281
TimeSpan (System), 251
top-level statement, 268, 466

ToString method, 200
trigonometric functions, 62
true keyword, 45
try keyword, 281
tuple, 137

deconstruction, 141
element names, 139
equality, 142
in parameters and return types, 139

type, 130, 466
Type (System), 378
type inference, 46, 466
type pattern, 318
type safety, 406, 466
typecasting, 466
typeof keyword, 204

U
uint, 40
UInt16 (System), 225
UInt32 (System), 225
UInt64 (System), 225
ulong, 40
UML, 180
unary operator, 51
unboxing, 226, 466
unboxing conversion, 226
unchecked context, 466
unchecked keyword, 391
underlying type, 136, 466
Unicode, 42
Unified Modeling Language, 180
Unity game engine, 408
Universal Windows Platform, 408, 466
unmanaged code, 367, 466
unmanaged type, 368
unpacking, 141, 466
unsafe code, 367, 466
unsafe context, 368, 466
unsafe keyword, 368
unsigned type, 40, 466
unverifiable code, 368
UpperCamelCase, 37
user-defined conversion, 467
ushort, 40
using directive, 22, 265, 467
using statement, 384, 467
UWP, 408

V
value keyword, 164
value semantics, 121, 229, 467
value type, 118, 467
ValueTask (System.Threading.Tasks), 359
ValueTask<T> (System.Threading.Tasks), 359
var, 46
var pattern, 322
variable, 25, 32, 467

assignment, 33
declaration, 25, 33
initialization, 33
naming, 36

variance, 390
verbatim string literal, 66
virtual machine, 402, 467
virtual method, 467

INDEX 475

Visual Basic, 10, 402, 405, 467
Visual Studio, 12, 18, 435, 467

Community Edition, 11
Enterprise Edition, 12
installing, 13
Professional Edition, 12

Visual Studio Code, 12, 467
Visual Studio for Mac, 12
volatile field, 392, 467
volatile keyword, 392

W
Web API, 407
web development, 407
where clause, 335
where keyword, 335
while keyword, 84
while loop, 84

whitespace, 23
widening conversion, 58
Windows, 10
Windows Forms, 407, 467
Windows Presentation Foundation, 407, 467
WinForms, 407
with keyword, 229
WPF, 407

X
Xamarin Forms, 407, 467
XML Documentation Comment, 106, 467

Y
yield keyword, 374

	Table of Contents
	Acknowledgments
	Introduction
	The Great Game of Programming
	Book Features
	Speedruns
	Challenges and Boss Battles
	Knowledge Checks
	Experience Points and Levels
	Narratives and the Plot
	Side Quests
	Glossary
	The Website
	Discord

	I Want Your Feedback
	An Overview

	Part 1: The Basics
	1 The C# Programming Language
	What is C#?
	What is .NET?

	2 Getting an IDE
	A Comparison of IDEs
	Visual Studio
	Visual Studio Code
	Visual Studio for Mac
	JetBrains Rider
	Other IDEs
	Online Editors
	No IDE

	Installing Visual Studio

	3 Hello World: Your First Program
	Creating a New Project
	A Brief Tour of Visual Studio
	Compiling and Running Your Program
	Syntax and Structure
	Strings and Literals
	Identifiers
	Hierarchical Organization
	Classes and Methods
	Namespaces
	The Base Class Library
	Program and Main
	Statements
	Whitespace

	Beyond Hello World
	Multiple Statements
	Expressions
	Variables
	Reading Text from the Console

	Compiler Errors, Debuggers, and Configurations
	Compiler Errors and Warnings
	Debugging
	Build Configurations

	4 Comments
	How to Make Good Comments

	5 Variables
	What is a Variable?
	Creating and Using Variables in C#
	Integers
	Reading from a Variable Does Not Change It
	Clever Variable Tricks
	Variable Names

	6 The C# Type System
	Representing Data in Binary
	Integer Types
	Declaring and Using Variables with Integer Types
	The Digit Separator
	Choosing Between the Integer Types
	Binary and Hexadecimal Literals

	Text: Characters and Strings
	Floating-Point Types
	Scientific Notation

	The bool Type
	Type Inference
	The Convert Class and the Parse Methods
	Parse Methods

	7 Math
	Operations and Operators
	Addition, Subtraction, Multiplication, and Division
	Compound Expressions and Order of Operations
	Special Number Values
	Integer Division vs. Floating-Point Division
	Division by Zero
	More Operators
	Unary + and - Operators
	The Remainder Operator

	Updating Variables
	Increment and Decrement Operators
	Prefix and Postfix Increment and Decrement Operators

	Working with Different Types and Casting
	Overflow and Roundoff Error
	The Math and MathF Classes
	π and e
	Powers and Square Roots
	Absolute Value
	Trigonometric Functions
	Min, Max, and Clamp
	More
	The MathF Class

	8 Console 2.0
	The Console Class
	The Write Method
	The ReadKey Method
	Changing Colors
	The Clear Method
	Changing the Window Title
	The Beep Method

	Sharpening Your String Skills
	Escape Sequences
	String Interpolation
	Alignment
	Formatting

	9 Decision Making
	The if Statement
	Block Statements
	Blocks, Variables, and Scope

	The else Statement
	else if Statements
	Relational Operators: ==, !=, <, >, <=, >=
	Using bool in Decision Making
	Logical Operators
	Nesting if Statements
	The Conditional Operator

	10 Switches
	Switch Statements
	Multiple Cases for the Same Arm

	Switch Expressions
	Switches as a Basis for Pattern Matching

	11 Looping
	The while Loop
	The do/while Loop
	Variables Declared in Block Statements and Loops

	The for Loop
	break Out of Loops and continue to the Next Pass
	Nesting Loops

	12 Arrays
	Creating Arrays
	Getting and Setting Values in Arrays
	Default Values
	Crossing Array Bounds
	Indexing from the End
	Ranges

	Other Ways to Create Arrays
	Some Examples with Arrays
	The foreach Loop
	Multi-Dimensional Arrays

	13 Methods
	Defining a Method
	Local Functions

	Calling a Method
	Methods Get Their Own Variables

	Passing Data to a Method
	Multiple Parameters
	Copied Values in Method Calls

	Returning a Value from a Method
	Returning Early
	Multiple Return Values?

	Method Overloading
	Simple Methods with Expressions
	XML Documentation Comments
	The Basics of Recursion

	14 Memory Management
	Memory and Memory Management
	The Stack
	Parameters
	Return Values

	Fixed-Size Stack Frames
	The Heap
	The Heap as a Graph of Objects
	Value Types and Reference Types
	Value Semantics and Reference Semantics

	Cleaning Up Heap Memory
	Automatic Memory Management

	Part 2: Object-Oriented Programming
	15 Object-Oriented Concepts
	Object-Oriented Concepts

	16 Enumerations
	Enumeration Basics
	Defining an Enumeration
	Using an Enumeration
	Revisiting ConsoleColor

	Underlying Types

	17 Tuples
	The Basics of Tuples
	Tuple Element Names
	Tuples and Methods
	More Tuple Examples
	Deconstructing Tuples
	Ignoring Elements with Discards

	Tuples and Equality

	18 Classes
	Defining a New Class
	Instances of Classes
	Constructors
	Default Constructors and Default Field Values
	Constructors with Parameters
	Multiple Constructors
	Initializing Fields Inline
	Name Hiding and the this Keyword
	Calling Other Constructors with this
	Leaving Off the Class Name

	Object-Oriented Design

	19 Information Hiding
	The public and private Accessibility Modifiers
	The Default Accessibility Level is private
	When to Use private and public
	Accessibility Levels as Guidelines, Not Laws

	Abstraction
	Type Accessibility Levels and the internal Modifier

	20 Properties
	The Basics of Properties
	Auto-Implemented Properties
	Immutable Fields and Properties
	Object Initializer Syntax and Init Properties
	Anonymous Types

	21 Static
	Static Members
	Static Fields
	Global State
	Static Properties
	Static Methods
	Static Constructors

	Static Classes

	22 Null References
	Null or Not?
	Disabling Nullable Type Warnings

	Checking for Null
	Null-Conditional Operators: ?. and ?[]
	The Null Coalescing Operator: ??
	The Null-Forgiving Operator: !

	23 Object-Oriented Design
	Requirements
	Designing the Software
	Noun Extraction
	UML
	CRC Cards
	Evaluating a Design

	Creating Code
	How to Collaborate
	Creating New Objects
	Constructor Parameters
	Method Parameters
	Asking Another Object
	Supplying the Reference via Property or Method
	Static Members
	Choices, Choices

	Baby Steps

	24 The Catacombs of the Class
	The Five Prototypes
	Object-Oriented Design
	Tic-Tac-Toe

	25 Inheritance
	Inheritance and the object Class
	Choosing Base Classes
	Constructors
	Casting and Checking for Types
	The protected Access Modifier
	Sealed Classes

	26 Polymorphism
	Abstract Methods and Classes
	New Methods

	27 Interfaces
	Defining Interfaces
	Implementing Interfaces
	Interfaces and Base Classes
	Explicit Interface Implementations
	Default Interface Methods
	Supporting Default Interface Methods
	Should I Use Default Interface Methods?

	28 Structs
	Memory and Constructors
	Classes vs. Structs
	Choosing to Make a Class or a Struct
	Rules to Follow When Making Structs

	Built-In Type Aliases
	Boxing and Unboxing

	29 Records
	Records
	String Representation
	Value Semantics
	Deconstruction
	with Statements

	Advanced Scenarios
	Additional Members
	Replacing Synthesized Members
	Non-Positional Records

	Struct- and Class-Based Records
	Inheritance

	When to Use a Record

	30 Generics
	The Motivation for Generics
	Defining a Generic Type
	Multiple Generic Type Parameters
	Inheritance and Generic Types

	Generic Methods
	Generic Type Constraints
	Multiple Constraints
	Constraints on Methods

	The default Operator

	31 The Fountain of Objects
	The Main Challenge
	Expansions

	32 Some Useful Types
	The Random Class
	The DateTime Struct
	The TimeSpan Struct
	The Guid Struct
	The List<T> Class
	Creating List Instances
	Indexing
	Adding and Removing Items from List
	foreach Loops
	Other Useful Things

	The IEnumerable<T> Interface
	The Dictionary<TKey, TValue> Class
	Types Besides string
	Dictionary Keys Should Not Change

	The Nullable<T> Struct
	ValueTuple Structs
	The StringBuilder Class

	Part 3: Advanced Topics
	33 Managing Larger Programs
	Using Multiple Files
	Namespaces and using Directives
	Advanced using Directive Features
	Global using Directives
	Static using Directives
	Name Conflicts and Aliases

	Putting Types into Namespaces
	Namespace Naming Conventions

	Traditional Entry Points

	34 Methods Revisited
	Optional Arguments
	Named Arguments
	Variable Number of Parameters
	Combinations
	Passing by Reference
	Output Parameters
	There’s More!

	Deconstructors
	Extension Methods

	35 Error Handling and Exceptions
	Handling Exceptions
	Handling Specific Exception Types
	Using the Exception Object

	Throwing Exceptions
	The finally Block
	Exception Guidelines
	What to Handle
	Only Handle What You Can Fix
	Use the Right Exception Type
	Avoid Pokémon Exception Handling
	Avoid Eating Exceptions
	Avoid Throwing Exceptions When Possible
	Come Back with Your Shield or On It

	Advanced Exception Handling
	Stack Traces
	Rethrowing Exceptions
	Inner Exceptions
	Exception Filters

	36 Delegates
	Delegate Basics
	The Action, Func, and Predicate Delegates
	MulticastDelegate and Delegate Chaining

	37 Events
	C# Events
	Events with Parameters
	Null Events

	Event Leaks
	EventHandler and Friends
	Custom Event Accessors

	38 Lambda Expressions
	Lambda Expression Basics
	The Origin of the Name Lambda
	Multiple and Zero Parameters
	When Type Inference Fails
	Discards

	Lambda Statements
	Closures

	39 Files
	The File Class
	String Manipulation
	Other String Parsing Methods

	File System Manipulation
	The Directory Class
	The Path Class
	There’s More!

	Other Ways to Access Files
	Streams
	Find a Library

	40 Pattern Matching
	The Constant Pattern and the Discard Pattern
	The Monster Scoring Problem
	The Type and Declaration Patterns
	Case Guards
	The Property Pattern
	Nested Patterns

	Relational Patterns
	The and, or, and not Patterns
	The Positional Pattern
	Deconstructors and the Positional Pattern

	The var Pattern
	Parenthesized Patterns
	Patterns with Switch Statements and the is Keyword
	Switch Statements
	The is Keyword

	Summary

	41 Operator Overloading
	Operator Overloading
	Defining an Operator Overload
	When to Overload Operators

	Indexers
	Index Initializer Syntax

	Custom Conversions
	The Pitfalls of Custom Conversions and Some Alternatives

	42 Query Expressions
	Queries and IEnumerable<T>
	Sample Classes
	Query Expression Basics
	Filtering
	Ordering

	Method Call Syntax
	Unique Methods

	Advanced Queries
	Multiple from Clauses
	Joining Multiple Collections Together
	The let Clause
	Continuation Clauses
	Grouping
	Group Joins

	Deferred Execution
	LINQ to SQL

	43 Threads
	The Basics of Threads
	Using Threads
	Sharing Data with a Thread
	Sleeping

	Thread Safety
	Locks

	44 Asynchronous Programming
	A Sample Problem
	Threads and Callbacks
	Using Tasks
	Task and Task<T> Basics
	The async and await Keywords

	Who Runs My Code?
	Some Additional Details
	Exceptions
	Cancellation
	Awaitables
	Limitations
	More Information

	45 Dynamic Objects
	Dynamic Type Checking
	Dynamic Objects
	Emulating Dynamic Objects with Dictionaries
	Using ExpandoObject
	Extending DynamicObject
	When to Use Dynamic Object Variations

	46 Unsafe Code
	Unsafe Contexts
	Pointer Types
	Fixed Statements
	Stack Allocations
	Fixed-Size Arrays
	The sizeof Operator
	The nint and nuint Types
	Calling Native Code with Platform Invocation Services

	47 Other Language Features
	Iterators and the yield Keyword
	Async Enumerables

	Constants
	Attributes
	Attributes on Everything
	Attributes are Classes

	Reflection
	The nameof Operator
	Nested Types
	Even More Accessibility Modifiers
	Bit Manipulation
	Bitshift Operators
	Bitwise Logical Operators
	Flags Enumerations

	using Statements and the IDisposable Interface
	Preprocessor Directives
	#warning and #error
	#region and #endregion
	Working with Conditional Compilation Symbols

	Command-Line Arguments
	Partial Classes
	Partial Methods

	The Notorious goto Keyword
	Generic Covariance and Contravariance
	Checked and Unchecked Contexts
	Volatile Fields

	48 Beyond a Single Project
	Outgrowing a Single Project
	NuGet Packages

	49 Compiling in Depth
	Hardware
	Assembly
	Programming Languages
	Instruction Set Architectures
	Virtual Machines and Runtimes

	50 .NET
	The History of .NET
	The Components of .NET
	Common Infrastructure
	Common Intermediate Language
	The Common Language Runtime
	The .NET Software Development Kit

	Base Class Library
	App Models
	Web App Models
	Mobile App Models
	Desktop App Models
	Game Development

	51 Publishing
	Build Configurations
	Publish Profiles
	.pubxml Files
	Publishing with a Profile
	After Publishing

	Part 4: The Endgame
	52 The Final Battle
	Overview
	Core Challenges
	Expansions

	53 Into Lands Uncharted
	Keep Learning
	Other Frameworks and Libraries
	Other Topics
	Make Software
	Do the Side Quests

	Where Do I Go to Get Help?
	Parting Words

	Part 5: Bonus Levels
	A Visual Studio Overview
	Windows
	The Code Window
	Code Navigation
	IntelliSense
	Quick Actions

	The Solution Explorer
	The Properties Window
	The Error List
	Other Windows

	The Options Dialog

	B Compiler Errors
	Code Problems: Errors, Warnings, and Messages
	How to Resolve Compiler Errors
	Compile Often
	Use a Quick Action
	Make Sure You Understand the Key Parts of the Error Message
	Backup or Undo
	Be Cautious with Internet Code
	Be Careful Transcribing Code
	Fix the Errors that Make Sense
	Look Around
	Take a Break
	Read the Documentation
	Ask for Help

	Common Compiler Errors
	“The name ‘x’ doesn’t exist in the current context”
	“) expected”, “} expected”, “] expected”, and “; expected”
	Cannot convert type ‘x’ to ‘y’
	“not all code paths return a value”
	“The type or namespace name ‘x’ could not be found”

	C Debugging Your Code
	Some Broken Sample Code
	Print Debugging
	Using a Debugger
	Breakpoints
	Stepping Through Code
	Edit and Continue and Hot Reload

	Breakpoint Conditions and Actions

	Glossary
	Index

