

Starbound Software

RB Whitaker

The C# Player’s Guide
Fourth Edition

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the author and
publisher were aware of those claims, those designations have been printed with initial capital
letters or in all capitals.

The author and publisher of this book have made every effort to ensure that this book’s
information was correct at press time. However, the author and publisher do not assume and
hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors
or omissions, whether such errors or omissions result from negligence, accident, or any other
cause.

Copyright © 2012-2021 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the author, except
for the inclusion of brief quotations in a review. For information regarding permissions, write
to:

RB Whitaker
rbwhitaker@outlook.com

ISBN-13: 978-0-9855801-4-8

Part 1: The Basics

✓ Page Name XP / ☐
 10 Knowledge Check - Level 1 25 / 1
 14 Install Visual Studio 75 / 3
 19 Hello World! 50 / 2
 21 What Comes Next 50 / 2
 22 The Makings of a Programmer 50 / 2
 24 Consolas and Telim 50 / 2
 28 The Thing Namer 3000 100 / 4
 34 Knowledge Check - Level 5 25 / 1
 42 The Variable Shop 100 / 4
 43 The Variable Shop Returns 50 / 2
 45 Knowledge Check - Level 6 25 / 1
 49 The Triangle Farmer 100 / 4
 52 The Four Sisters and the Duckbear 100 / 4
 53 The Dominion of Kings 100 / 4
 64 The Defense of Consolas 200 / 8
 71 Repairing the Clocktower 100 / 4
 73 Watchtower 75 / 3
 77 Buying Inventory 100 / 4
 78 Discounted Inventory 50 / 2
 83 The Prototype 100 / 4
 84 The Magic Cannon 100 / 4
 89 The Replicator of D’To 100 / 4
 90 The Laws of Freach 50 / 2
 100 Taking a Number 100 / 4
 101 Countdown 100 / 4
 116 Knowledge Check - Level 14 25 / 1
 117 Hunting the Manticore 250 / 10

Part 2: Object-Oriented Programming

✓ Page Name XP / ☐
 123 Knowledge Check - Level 15 25 / 1
 126 Simula’s Test 100 / 4
 135 Simula’s Soups 100 / 4
 145 Vin Fletcher’s Arrows 100 / 4
 153 Vin’s Trouble 50 / 2
 160 The Properties of Arrows 100 / 4
 164 Arrow Factories 100 / 4
 183 The Point 75 / 3
 183 The Color 75 / 3
 183 The Card 100 / 4
 184 The Locked Door 100 / 4
 184 The Password Validator 100 / 4
 185 Rock-Paper-Scissors 150 / 6
 186 15-Puzzle 150 / 6
 186 Hangman 150 / 6
 187 Tic-Tac-Toe 300 / 12
 197 Packing Inventory 150 / 6
 201 Labeling Inventory 50 / 2
 202 Carrying Water 75 / 3
 209 The Old Robot 100 / 4
 217 Room Coordinates 50 / 2
 221 War Preparations 100 / 4
 230 Colored Items 100 / 4
 232 The Fountain of Objects 500 / 20
 234 Small, Medium, or Large 100 / 4
 234 Pits 100 / 4
 234 Maelstroms 100 / 4
 235 Amaroks 100 / 4
 235 Getting Armed 100 / 4
 236 Getting Help 100 / 4
 239 The Robot Pilot 50 / 2
 241 Time in the Cavern 50 / 2
 245 Lists of Commands 75 / 3

Part 3: Advanced Features

✓ Page Name XP / ☐
 260 Knowledge Check - Level 33 25 / 1
 261 The Feud 75 / 3
 261 Dueling Traditions 75 / 3
 267 Safer Number Crunching 50 / 2
 269 Knowledge Check - Level 34 25 / 1
 269 Better Random 100 / 4
 281 Exepti’s Game 100 / 4
 286 The Sieve 100 / 4
 292 Knowledge Check - Level 37 25 / 1
 293 The Automatic Tree Harvester 75 / 3
 298 Knowledge Check - Level 38 25 / 1
 298 The Lambda Sieve 50 / 2
 306 The Long Game 100 / 4
 314 The Potion Masters of Pattren 150 / 6
 322 Knowledge Check - Level 41 25 / 1
 322 Navigating Operand City 100 / 4
 323 Indexing Operand City 75 / 3
 323 Converting Directions to Offsets 50 / 2
 332 Knowledge Check - Level 42 25 / 1
 333 The Three Lenses 100 / 4
 340 The Repeating Stream 150 / 6
 350 Knowledge Check - Level 44 25 / 1
 350 Asynchronous Random Words 150 / 6
 351 Many Random Words 50 / 2
 356 Uniter of Adds 75 / 3
 357 The Robot Factory 100 / 4
 363 Knowledge Check - Level 46 25 / 1
 384 Knowledge Check - Level 47 25 / 1
 389 Colored Console 100 / 4
 390 The Great Humanizer 100 / 4
 395 Knowledge Check - Level 49 25 / 1
 400 Knowledge Check - Level 50 25 / 1
 405 Altar of Publication 75 / 3

Part 4: The Endgame

✓ Page Name XP / ☐
 411 Core Game: Building Character 300 / 12
 411 Core Game: The True Programmer 100 / 4
 412 Core Game: Actions and Players 300 / 12
 412 Core Game: Attacks 200 / 8
 413 Core Game: Damage and HP 150 / 6
 414 Core Game: Death 150 / 6
 414 Core Game: Battle Series 150 / 6
 414 Core Game: The Uncoded One 100 / 4
 414 Core Game: The Player Decides 200 / 8
 415 Expansion: The Game’s Status 100 / 4
 416 Expansion: Items 200 / 8
 416 Expansion: Gear 300 / 12
 417 Expansion: Stolen Inventory 150 / 6
 417 Expansion: Vin Fletcher 150 / 6
 418 Expansion: Attack Modifiers 150 / 6
 418 Expansion: Damage Types 150 / 6
 419 Expansion: Making it Your Own ? / ?
 420 Expansion: Restoring Balance 100 / 4

Part 5: Bonus Levels

✓ Page Name XP / ☐
 432 Knowledge Check - Bonus Level A 25 / 1
 437 Knowledge Check - Bonus Level B 25 / 1
 442 Knowledge Check - Bonus Level C 25 / 1

TABLE OF CONTENTS

Acknowledgments xvii

 Introduction 1
The Great Game of Programming 1
Book Features 2
I Want Your Feedback 5
An Overview 6

PART 1: THE BASICS
1. The C# Programming Language 9

What is C#? 9
What is .NET? 10

2. Getting an IDE 11
A Comparison of IDEs 11
Installing Visual Studio 13

3. Hello World: Your First Program 15
Creating a New Project 15
A Brief Tour of Visual Studio 17
Compiling and Running Your Program 18
The Adventure Begin 19
Compiler Errors, Debuggers, and Configurations 24

4. Comments 26
How to Make Good Comments 27

5. Variables 29
What is a Variable? 29
Creating and Using Variables in C# 30

Integers 31
Reading from a Variable Does Not Change It 32
Clever Variable Tricks 33
Variable Names 33

6. The C# Type System 35
Representing Data in Binary 35
Integer Types 36
Text: Characters and Strings 39
Floating-Point Types 40
The bool Type 42
Type Inference 43
The Convert Class 44

7. Math 46
Operations and Operators 47
Addition, Subtraction, Multiplication, and Division 47
Compound Expressions and Order of Operations 48
Special Number Values 50
Integer Division vs. Floating-Point Division 50
Division by Zero 51
More Operators 51
Updating Variables 52
Working with Different Types and Casting 54
Overflow and Underflow 56
The Math and MathF Classes 57

8. Console 2.0 59
The Console Class 59
Sharpening Your String Skills 61

9. Decision Making 65
The if Statement 65
The else Statement 68
else if Statements 69
Relational Operators: ==, !=, <, >, <=, >= 69
Using bool in Decision Making 70
Logical Operators 71
Nesting if Statements 72
The Conditional Operator 72

10. Switches 74
Switch Statements 75
Switch Expressions 76
Switches as a Basis for Pattern Matching 77

11. Looping 79

The while Loop 79
The do/while Loop 81
The for Loop 81
break Out of Loops and continue to the Next Pass 82
Nesting Loops 83

12. Arrays 85
Creating Arrays 86
Getting and Setting Values in Arrays 86
Other Ways to Create Arrays 88
Some Examples with Arrays 89
The foreach Loop 90
Multi-Dimensional Arrays 90

13. Methods 92
Defining a Method 92
Calling a Method 93
Passing Data to a Method 95
Returning a Value from a Method 97
Method Overloading 98
Simple Methods with Expressions 99
XML Documentation Comments 99
The Basics of Recursion 100

14. Memory Management 102
Memory and Memory Management 103
The Stack 103
Fixed-Size Stack Frames 108
The Heap 108
Cleaning Up Heap Memory 115

PART 2: OBJECT-ORIENTED PROGRAMMING
15. Object-Oriented Concepts 121
16. Enumerations 124

Enumeration Basics 125
Underlying Types 127

17. Tuples 129
The Basics of Tuples 130
Tuple Element Names 131
Tuples and Methods 132
More Tuple Examples 132
Deconstructing Tuples 133
Tuples and Equality 134

18. Classes 136

Defining a New Class 137
Instances of Classes 138
Constructors 140
Object-Oriented Design 145

19. Information Hiding 146
The public and private Accessibility Modifiers 147
Abstraction 150
Type Accessibility Levels and the internal Modifier 151

20. Properties 154
The Basics of Properties 154
Auto-Implemented Properties 157
Immutable Fields and Properties 158
Object Initializer Syntax and Init Properties 159
Anonymous Types 160

21. Static 161
Static Members 161
Static Classes 164

22 Null References 165
Checking for Null 166
Choosing When to Allow Null 167

23. Object-Oriented Design 169
Requirements 170
Designing the Software 171
Creating Code 177
How to Collaborate 178
Baby Steps 180

24. The Catacombs of the Class 182
The Five Prototypes 182
Object-Oriented Design 185
Tic-Tac-Toe 187

25. Inheritance 189
Inheritance and the object Class 190
Choosing Base Classes 192
Constructors 193
Casting and Checking for Types 195
The protected Access Modifier 196
Sealed Classes 197

26. Polymorphism 198
Abstract Methods and Classes 200
New Methods 201

27. Interfaces 203
Defining Interfaces 204
Implementing Interfaces 205
Interfaces and Base Classes 206
Explicit Interface Implementations 206
Default Interface Methods 207

28. Structs 211
Classes vs. Structs 212
Built-In Type Aliases 215
Boxing and Unboxing 216

29. Records 218
Records 218
with Expressions 220
Classes, Records, or Structs? 221

30. Generics 222
The Motivation for Generics 222
Defining a Generic Type 225
Generic Methods 227
Generic Type Constraints 228
The default Operator 230

31. The Fountain of Objects 231
The Main Challenge 232
Expansions 234

32. Some Useful Types 237
The Random Class 238
The DateTime Struct 239
The TimeSpan Struct 240
The Guid Struct 241
The List<T> Class 242
The IEnumerable<T> Interface 245
The Dictionary<TKey, TValue> Class 246
The Nullable<T> Struct 248
ValueTuple Structs 249

PART 3: ADVANCED TOPICS
33. Managing Larger Programs 253

Using Multiple Files 253
Namespaces 254
using Directives 256
Traditional Entry Points 258

34. Methods Revisited 262

Optional Arguments 262
Named Arguments 263
Variable Number of Parameters 263
Combinations 264
Passing by Reference 264
Deconstructors 267
Extension Methods 268

35. Error Handling and Exceptions 271
Handling Exceptions 272
Throwing Exceptions 274
The finally Block 275
Exception Guidelines 276
Advanced Exception Handling 279

36. Delegates 282
Delegate Basics 282
The Action, Func, and Predicate Delegates 285
MulticastDelegate and Delegate Chaining 286

37. Events 287
C# Events 287
Event Leaks 290
EventHandler and Friends 291
Custom Event Accessors 292

38. Lambda Expressions 294
Lambda Expression Basics 294
Lambda Statements 296
Closures 297

39. Files 299
The System.IO.File Class 299
String Manipulation 301
File Manipulation 303
Other Ways to Access Files 304

40. Pattern Matching 307
The Constant Pattern and the Discard Pattern 308
The Monster Scoring Problem 308
The Type and Declaration Pattern 309
Case Guards 310
The Property Pattern 310
Relational Patterns 311
The and, or, and not Patterns 311
The Positional Pattern 312
The var Pattern 313

Parenthesized Patterns 313
Patterns with Switch Statements and the is Keyword 313
Summary 314

41. Operator Overloading 316
Operator Overloading 317
Indexers 318
Custom Conversions 320

42. Query Expressions 324
Query Expression Basics 325
Method Call Syntax 328
Advanced Queries 329
Deferred Execution 331
LINQ to SQL 332

43. Threads 334
The Basics of Threads 334
Using Threads 335
Thread Safety 338

44. Asynchronous Programming 342
Threads and Callbacks 343
Using Tasks 344
Who Runs My Code? 347
Some Additional Details 349

45. Dynamic Objects 352
Dynamic Type Checking 353
Dynamic Objects 353
Emulating Dynamic Objects with Dictionaries 354
Using ExpandoObject 354
Extending DynamicObject 355
When to Use Dynamic Object Variations 356

46. Unsafe Code 358
Unsafe Contexts 359
Pointer Types 359
Fixed Statements 360
Stack Allocations 361
Fixed-Size Arrays 361
The sizeof Operator 362
The nint and nuint Types 362
Calling Native Code with Platform Invocation Services 362

47. Other Language Features 364
Iterators and the yield Keyword 365
Compile-Time Constants 366

Attributes 367
Reflection 369
The nameof Operator 370
Nested Types 370
Even More Accessibility Modifiers 371
Bit Manipulation 372
using Statements and the IDisposable Interface 375
Preprocessor Directives 376
Command-Line Arguments 378
Partial Classes 379
The Notorious goto Keyword 380
Generic Covariance and Contravariance 380
Checked and Unchecked Contexts 382
Volatile Fields 383

48. Beyond a Single Project 385
Outgrowing a Single Project 385
NuGet Packages 388

49. Compiling in Depth 391
Hardware 391
Assembly 393
Programming Languages 393
Instruction Set Architectures 394
Virtual Machines and Runtimes 394

50. .NET 396
The History of .NET 396
The Components of .NET 397
Common Infrastructure 397
Base Class Library 398
App Models 399

51. Publishing 401
Build Configurations 401
Publish Profiles 402

PART 4: THE ENDGAME
52. The Final Battle 409

Overview 410
Core Challenges 410
Expansions 415

53. Into Lands Uncharted 421
Keep Learning 421

Where Do I Go to Get Help? 422
Parting Words 423

PART 5: BONUS LEVELS
A. Visual Studio 426

Windows 426
The Options Dialog 431

B. Compiler Errors 433
Code Problems: Errors, Warnings, and Messages 433
How to Resolve Compiler Errors 434
Common Compiler Errors 436

C. Debugging Your Code 438
Print Debugging 439
Using a Debugger 439
Breakpoints 440
Stepping Through Code 441
Breakpoint Conditions and Actions 442

Glossary 443
Tables and Charts 459
Index 464

ACKNOWLEDGMENTS

I remember the day I published the first edition of this book. I remember thinking that I was
done with the hard part, and I could tweak a paragraph here and add a chapter there to make
new editions as the C# language progressed. I seriously underestimated how fast the C#
community and the C# language itself could change. And I seriously underestimated how
much I would learn myself, especially about how to teach complex programming topics.
While this edition is philosophically the same as the first edition, I feel like I have rewritten the
entire book from scratch. I don’t think there is a single sentence that I didn’t rework. In many
ways, it feels like an entirely different book. In others, it is still the same book.

An undertaking like this does not happen alone.

I couldn’t have ever finished this book without help.

I have had conversations with many readers over the years that have helped me take the right
path. I especially need to thank those who participated in this edition’s Early Access program
and gave constructive criticism and feedback. Your efforts immensely improved the book.

I also need to thank my family. My parents’ confidence and encouragement to do my best have
caused me to do things I could never have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight
of writing a book was unbearable, who read through my book and gave honest, thoughtful,
and creative feedback and guidance, and who lovingly pressed me to keep going on this book,
day after day. She has been patient with me as I’ve done four editions of this book over the
years. Without her, this book would still be a random scattering of files buried in some obscure
folder on my computer, collecting green silicon-based mold.

To all of you, I owe you my sincerest gratitude.

-RB Whitaker

 INTRODUCTION

THE GREAT GAME OF PROGRAMMING
I have a firmly held personal belief, grown from decades of programming: in a very real sense,
programming is a game. At least, it can be like playing a game with the right mindset.

For me, spending a few hours programming—crafting code that bends these amazing
computational devices to your will, to create worlds of living software—is entertaining and
rewarding. For me, it competes with delving into the Nether in Minecraft, snatching the last
Province card in Dominion, or taking down a reaper in Mass Effect.

I don’t mean that programming is mindless entertainment. It is rarely that. Most of your time
is spent puzzling out the right next step or figuring out why things aren’t working as you
expected. But part of what makes games engaging is that they are challenging. They require
creativity, patience, and exploration. If you start your journey into programming with that
mindset—that creating meaningful and useful software is a challenge and a puzzle and that it
takes patience, curiosity, and creativity to work through—you will be far better off than 95% of
the people who set out to program. Some days, it will feel like you are playing Flappy Bird,
Super Meat Boy, or Dark Souls—all notoriously difficult games—but creating software is
challenging in all the right ways.

If programming is like a game, then it is a massively-multiplayer, open-world sandbox game
with role-playing elements. That is to say:

• Massively multiplayer: While you may tackle specific problems as an individual, the
Internet and things like this book ensure you are never alone.

• An open-world sandbox game: You have few constraints placed on you; you can build
what, when, and how you want.

• Role-playing elements: With practice, learning, and experience, you get better in the
skills and tools you work with, going from a lowly Level 1 beginner to a master, sharpening
your skills and abilities as you go.

If programming is to be fun or rewarding, then learning to program must be so as well. Rare is
the book that can make learning complex technical topics anything more than tedious. This
book attempts to do just that. If a spoonful of sugar can help the medicine go down, then there

2 INTRODUCTION

must be some blend of eleven herbs and spices that will make even the most complex
technical topic have an element of fun, challenge, and reward.

Over the years, strategy guides, player handbooks, and player’s guides have been made for
popular games. These guides help players learn and understand the game world and
challenges they will encounter, provide time-saving tips and tricks, and help prevent players
from getting stuck at any one place for too long.

This book seeks to guide people interested in learning to play the Great Game of Programming
using C#.

This book skips the typical business-centric examples found in other books in favor of samples
with a little more spice. Many are game-related, and many of the hands-on challenges involve
building small games or slices of games. After all, these make the journey more entertaining
and exciting. While C# is an excellent language for game development, this book is not
specifically a C# game programming book. You will undoubtedly come away with ideas to try
if that the path you choose, but this book is focused on becoming skilled with the C# language
so that you can use it to build any type of program, not just games. (Most programmers are
paid to make business-centric applications, web apps, and smartphone apps.)

This book focuses on console applications. Console applications are those text-based
programs where the computer receives text input from the user and displays text responses in
the stereotypical white text on a black background window. Admittedly, console applications
are less exciting than a web app, mobile app, or game. (Though we will learn tricks that will
add a bit of splash to console applications.)

Why not start with a more exciting type of application? The main reason is that regardless of if
you want to build games, smartphone apps, web apps, or desktop apps, the starting points in
those worlds already expect that you know much about programming and using the language.
For example, I just looked over the starter code for a certain C# game development framework.
In it, I can see that it demands you already know how to use advanced topics covered in Level
25 (inheritance), Level 26 (polymorphism), and Level 30 (generics) just to get started! While
some people successfully dive right in and manage to stay afloat, it is usually wiser to build up
your swimming skills in a lap pool before trying to swim across the raging ocean. Starting from
the basics gives you the right foundation to build upon. It makes learning the specific things
you need to develop specific applications go much faster and more smoothly. Few will be
satisfied with just console applications, but spending a few weeks covering the basics here
before moving on will make the process go much more smoothly.

BOOK FEATURES
To produce a fun and rewarding (or at least not dull and useless) book means adding some
features that most programming books do not have. Let’s look at a few of the book’s features
so that you know what to expect.

Speedruns
At the start of each level (chapter) is a Speedrun section that outlines the key points described
in the level. It is not a substitute for going through the whole level in detail but is helpful in a
handful of situations:

1. You’re reviewing the material and want a reminder of the key points.
2. You are skimming to see if some level has information that you will need soon.
3. You are trying to remember which level covered some particular topic.

BOOK FEATURES 3

Challenges
Scattered throughout the book are hands-on challenges that give you a specific problem to
work on. These start small early in the book, but some of the later ones are quite large. Each
of these challenges is marked with the following icon:

I strongly recommend that you do these challenges. You don’t beat a game by reading the
player’s guide. You don’t learn to program by reading a book. You will only truly learn if you
sit down and program.

I also recommend you do these challenges as you encounter them, instead of reading ten
chapters and returning to them. The read a little, program a little model is far better at helping
you learn fast.

I will also suggest that these challenges should not be the only things you program as you
learn, especially if you are relatively new to programming in general. Half of your
programming time should come from the challenges here, with the rest coming from your
own imagination. Working on things of your own invention will be more exciting to you. But
also, when you are in that creative mindset, you mentally explore the programming world
better. You start to think about how you can apply the tools you have learned in new situations,
rather than being told, “Go use this tool over here.”

As you do that, keep in mind the size of the challenges you are inventing for yourself. If you
are first learning how to draw, you don’t go find millennia-old chapel ceilings to paint (or at
least you don’t expect them to turn out like the Sistine Chapel). Aim for things that push your
limits a little but aren’t intimidating. Keep in mind that everything is a bit harder than you
initially expect. Don’t be afraid to end up with a few garbage drawings in your sketchbook to
continue the art analogy. It is fine to end up with a few programs where you say, “Well, at least
I learned a thing or two from that experiment. Let’s go try something else.” They won’t all be
masterpieces, and that’s fine.

If these specific challenges are not your style, then skip them. But please substitute them with
something else. You will learn little if you don’t sit down and write some code.

When a challenge contains a Hint, these are suggestions or possibilities, not things you must
do. If you find a different path that works, go for it.

Some challenges also include things labeled Answer this question. I recommend writing out
your answer. (Comments (Level 4) could be a good approach.) Our brains like to tell us it
understands something without proving it does. We mentally skip the proof, often to our
detriment. Writing it out ensures we know it. (And these questions usually only take a few
seconds to answer.)

I have posted my answers to these challenges on the book’s website, described later in this
introduction. If you want a hint or want to compare answers, you can review what I did. Just
because our solutions are different doesn’t make yours bad or wrong. I make plenty of my own
mistakes, have my own preferences for the various tools in the language, and have also been
programming in C# for a long time. As long as you have a solution that works, you’re in great
shape.

4 INTRODUCTION

 Knowledge Checks
Some levels in this book focus on conceptual topics that are not well-tested by a programming
problem. In these cases, instead of a Challenge problem, these levels will have a Knowledge
Check, containing a quiz with true/false, multiple-choice, and short answer questions. The
answers are immediately below the Knowledge Check, so you can see if you learned the key
points right away. These are marked with the knowledge scroll icon below:

Experience Points and Levels
Since this book is a player’s guide, I’ve attempted to turn the learning process into a game.
Each Challenge and Knowledge Check section is marked in the top right with experience
points (written as XP, as most games do) that you earn by completing the challenge. When
you complete a challenge successfully, you can claim the XP associated with it and add it to
your total. Towards the front of this book, after the title page and the map, is an XP Tracker.
You can use this to track your progress, check off challenges as you complete them, and
marking off your progress as you go.

You can also get extra copies of the XP Tracker on the book’s website (below) if you do not
want to write in your book, have a digital copy, or a used copy where somebody else has
already marked it.

As you collect XP, you will accumulate enough points to level up from, all the way to Level 10.
If you reach Level 10, you will have completed nearly every challenge in this book and should
have a solid grasp of C# programming.

The XP assigned to each challenge is not random. Easier challenges have fewer points; harder
challenges have more. While measuring difficulty is somewhat subjective, you can generally
count on spending more time with challenges that have more points and get a larger reward
for your efforts.

Narratives and the Plot
The challenges form a loose storyline that has you, the (soon to be) Master Programmer
journeying through a land that has been stripped of the ability to program by the malevolent
and amorphous Uncoded One. Using your growing C# programming skills, you will be able to
help the land’s inhabitants, fend off the Uncoded One’s onslaught, and eventually face the
Uncoded One in a final battle at the end of the book.

Even if this plot is not attractive to you, the challenges are still worth doing. Feel free to ignore
the book-long storytelling if it isn’t helpful for you.

While much of the book’s plot is revealed in the Challenge descriptions themselves, there were
places where doing so felt shoehorned. Narrative sections supplement the descriptions in the
Challenge sections but have no purpose other than to advance this book-long plot. These are
marked with the icon below:

If you are ignoring the plot, you can skip these sections. They do not contain information that
helps you be a better C# programmer.

I WANT YOUR FEEDBACK 5

Side Quests
While everything in this book worth knowing (skilled C# programmers know all of it), some
sections are more important than others. The less useful sections can reasonably be skipped
in your first pass going through the book. These sections are marked as Side Quests, shown by
the following icon:

These often deal with situations that are less common or less impactful. If you’re pressed for
time, these sections are safer to skip than the rest. However, I recommend coming back to
them later if you don’t get them the first time around.

Glossary
In addition to a programming language, programmers themselves have a mountain of jargon
and terminology unique to the field. Understanding how programmers speak is a vast
additional challenge for new programmers. To help you with this undertaking, I have carefully
defined new terminology within the book as it arises and collected all of these new words and
concepts into a glossary at the back of the book. Only the lucky few will remember all such
words from seeing it defined once. Use the glossary to refresh your mind on any term you
don’t remember well.

The Website
This book has a website associated with it, which has a lot of supporting content. The main
page for this book is at http://csharpplayersguide.com/. Among the things on the website is
the following:

• http://csharpplayersguide.com/solutions Contains my solutions to all the Challenge
sections in this book. My answer is not necessarily more correct than yours, but it can give
you some thoughts on a different way to solve the problem and perhaps some hints on
how to progress if you are stuck.

• http://csharpplayersguide.com/solutions also contains more thorough explanations
for all of the Knowledge Checks in the book.

• http://csharpplayersguide.com/errata This page contains errata (errors in the book)
that have been reported to provide clarity on what was meant. If you notice something
that seems wrong or inconsistent, you may find a correction here.

I WANT YOUR FEEDBACK
I depend on readers like you to help me see how to make the book better. This book is much
better because people who were once in your situation reached out to me and let me know
what was working (or not) for them.

Naturally, I’d love to hear that you loved the book. But I need constructive criticism too. If there
is a challenge that was too hard, a typo you found, a section that wasn’t clear, or even that you
felt an entire chapter or the whole book was bad, I want to hear it. I have gone to great lengths
to make this book as good as possible, but I can make it even better for our fellow

http://csharpplayersguide.com/
http://csharpplayersguide.com/solutions
http://csharpplayersguide.com/solutions
http://csharpplayersguide.com/errata

6 INTRODUCTION

programmers who follow in our footsteps with help from you. Don’t hesitate to reach out to
me, whether your feedback is good or bad!

I have many ways that you can reach out to me. Go to http://csharpplayersguide.com/
contact to find a way that works for you.

AN OVERVIEW
Let’s take a peek at what this book covers. This book has five major parts:

• Part 1—The Basics. This first part covers a lot of the simplest elements of C#
programming. It focuses on what programmers call procedural programming, including
storing data, picking and choosing which lines of code to run, and creating reusable
chunks of code.

• Part 2—Object-Oriented Programming. C# uses an approach called object-oriented
programming to help you break down a large program into smaller pieces that are each
responsible for a little slice of the whole program. These tools are essential as you begin
building bigger programs.

• Part 3—Advanced Topics. While Parts 1 and 2 deal with the most critical elements of the
C# language, there are various other language features that are worth knowing. This part
consists of mostly independent topics. You can jump around and learn the ones that you
feel are most important to you (or skip them all entirely, for a while). In some ways, you
could consider all of Part 3 to be a big Side Quest, though you will be missing out on some
cool C# features if you skip it all.

• Part 4—The Endgame. While hands-on challenges are scattered throughout the book,
Part 4 consists of a single, extensive, final program that will test the knowledge and skills
that you have learned. It will also wrap up the book, pointing you toward Lands Uncharted
and where you might go after finishing this book.

• Part 5—Bonus Levels. The end of the book contains a few additional chapters that guide
you on what to do when you don’t know what else to do—dealing with compiler errors
and debugging your code. After the bonus levels comes the glossary, some tables and
charts that summarize important aspects of C# programming, and the index.

Please do not feel like you must read this book cover to cover to get value from it.

If you are new to programming, I recommend a slow, careful path through Parts 1 and 2,
skipping the Side Quest sections and only advancing when you feel comfortable taking the
next step.

After Part 2, you might continue your course through the advanced features of Part 3, or you
might also choose to skim it to get a flavor for what else C# offers without going into depth on
anything. Even if you skim or skip Part 3, you can still attempt the Final Battle in Part 4. The
bonus levels in Part 5 will also be valuable to you any time after you finish Level (not Part) 3.

If you’re making consistent progress and getting good practice in, it doesn’t matter if you are
progressing slowly. It isn’t a race.

Things will be different if you are an experienced programmer, especially somebody already
familiar with object-oriented programming or a language with a similar structure to C# (like
Java, C++, and C). In that case, you will likely be able to race through Part 1 quickly, slow down
only a bit in Part 2 as you learn how C# deals with object-oriented programming, and then
spend most of your time in Part 3, learning the features that make C# stand out in the crowd.

http://csharpplayersguide.com/contact
http://csharpplayersguide.com/contact
http://csharpplayersguide.com/contact

Part 1
The Basics

The world of C# programming lies in front of you, waiting to be explored. In Part 1, we begin our
adventure and learn the basics of programming in C#:

• Learn the main features of C# and .NET (Level 1).
• Install tools to allow us to begin programming in C# (Level 2).
• Write our first few programs and learn the basic ingredients of a C# program (Level 3).
• Annotate your code with comments (Level 4).
• Store data in variables (Level 5).
• Understand the type system (Levels 6).
• Do basic math (Level 7).
• Get input from the user (Level 8).
• Make decisions (Levels 9 and 10).
• Run code more than once in loops (Level 11).
• Make arrays, which contain multiple pieces of data (Level 12).
• Make methods, which are named, packaged, reusable bits of code (Level 13).
• Understand how memory is used in C# (Level 14).

LEVEL 1
 THE C# PROGRAMMING LANGUAGE

 Speedrun
• C# is a general-purpose programming language. You can make almost anything with it.
• C# runs on .NET, which is many things: a runtime that supports your program, a library of code to

build upon, and a set of tools to aid in constructing programs.

Computers are amazing machines, capable of running billions of instructions every second.
Yet computers have no innate intelligence and do not know what instructions will solve a
problem independently. The people who can harness these powerful machines to solve
meaningful problems are the wizards of the computing world we call programmers.

Humans and computers do not speak the same language. Human language is imprecise and
open to interpretation. The binary instructions computers use, formed from 1’s and 0’s, are
precise but very difficult for humans to use. Programming languages are the bridge between
the two—precise enough for a computer to run and clear enough for a human to understand.

WHAT IS C#?
There are many programming languages out there, but C# is one of the few that is both widely
used and very loved. Let’s talk about some of its key features.

C# is a general-purpose programming language. Some languages solve only a specific type of
problem. C# is designed to solve virtually any problem equally well. You can use it to make
games, desktop programs, web applications, and smartphone apps, and more. However, C# is
at its best when building applications (of any sort) with it. You probably wouldn’t write a new
operating system or device driver with it (though both have been done).

C# strikes a balance between power and ease of use. Some languages give the programmer
more control than C#, but with more ways to go wrong. Other languages do more to ensure
bad things can’t happen by removing some of your power. C# tries to give you both power and
ease of use and often manages to do both but always strikes a balance between the two when
needed.

10 LEVEL 1 THE C# PROGRAMMING LANGUAGE

C# is a living language. It changes over time to adapt to a changing programming world.
Programming as a practice has changed significantly in the 20 years since it was created. C#
has evolved and adapted over time. At the time of publishing, C# is on version 9.0, with new
major updates every year or two.

C# is in the same family of languages as C, C++, and Java, meaning that C# will be easier to
pick up if you know any of those. After learning C#, learning any of those will also be easier.
This book sometimes points out the differences between C# and these other languages for
readers who may know them.

C# is a cross-platform language. It can run on every major operating system, including
Windows, Linux, macOS, iOS, and Android.

This next paragraph is for veteran programmers; don’t worry if none of this makes sense.
(Most will make sense after this book.) C# is a statically typed, garbage collected, object-
oriented programming language with imperative, functional, and event-driven aspects. When
needed, it also allows for dynamic typing and unmanaged code in small doses.

WHAT IS .NET?
C# is built upon a thing called .NET (pronounced “dot net”). .NET is often called a framework
or platform, but .NET is the entire ecosystem surrounding C# programs and the programmers
that use it. For example, .NET includes a runtime, which is the environment your C# program
runs within. Figuratively speaking, it is like the air your program breathes and the ground it
stands on as it runs. Every programming language has a runtime of one kind or another, but
the .NET runtime is extraordinarily capable, taking a lot of burden off of you as a programmer.

.NET also includes a pile of code that you can use in your program directly. This collection is
called the Base Class Library (BCL). You can think of this like mission control supporting a
rocket launch: a thousand people who each know their specific job well, ready to jump in and
support the primary mission (your code) the moment they are needed. For example, you
won’t have to write your own code to open files or compute a square root because the Base
Class Library can do this for you.

.NET includes a broad set of tools called a Software Development Kit (SDK) that makes
programming life easier.

.NET also includes things to help you build specific kinds of programs like web, mobile, and
desktop applications.

.NET is an ecosystem shared by other programming languages. Aside from C#, the three other
most popular languages are Visual Basic, F#, and PowerShell. You could write code in C# and
then use it in a Visual Basic program. Because of their shared ecosystem, there are plenty of
similarities, and in some cases, I’ll point these out.

Knowledge Check Level 1 25 XP
Check your knowledge with the following questions:

1. True/False. C# is a special-purpose language optimized for making web applications.
2. What is the name of the framework that C# runs on?

Answers: (1) False. (2) .NET

LEVEL 2
GETTING AN IDE

 Speedrun
• Programming is complex; you want an IDE to make programming life easier.
• Visual Studio is the most used IDE for C# programming. Visual Studio Community is free, feature-

rich, and recommended for beginners.
• Other C# IDEs exist, including Visual Studio Code and Rider.

Modern-day programming is complex and challenging, but a programmer does not have to
go alone. Programmers work with an extensive collection of tools to help them get their job
done. An integrated development environment (IDE) is a program that combines these tools
into a single application, designed to streamline the programming process. An IDE does for
programming what Microsoft Word does for word processing or Adobe Photoshop for image
editing. Most programmers will use an IDE as they work.

There are several C# IDEs to choose from. (In fact, you can do without one and use the raw
tools directly; I don’t recommend that for new programmers.)

In this level, we will look at the most popular C# IDEs and discuss their strengths and
weaknesses.

As we begin programming, we will use our IDE for many tasks. Unfortunately, every IDE does
things differently, and this book cannot cover how to do every job in all possible IDEs. While
this book’s focus is on the C# language and not a specific IDE, this book will illustrate how to
do a task in Visual Studio Community Edition when necessary. You can still feel free to use a
different IDE. The C# language itself is the same regardless of which IDE you pick, but you
may find some small differences when performing a task in the IDE. Usually, the process is
intuitive, and if tinkering fails, a Google search usually finds the answer quickly.

A COMPARISON OF IDES
There are several notable IDEs that you can choose from.

12 LEVEL 2 GETTING AN IDE

Visual Studio
Microsoft Visual Studio is the stalwart, tried-and-true IDE that most C# developers use. Visual
Studio versions go back even before C# existed, though it has grown up a lot since those days.

Of the IDEs we discuss here, this is the most feature-rich and capable, though it has one
significant drawback: it works on Windows but not Mac or Linux.

Visual Studio comes in three different “editions” or levels: Community, Professional, and
Enterprise. The Community and Professional editions have the same feature set, while
Enterprise has an expanded set of features with some nice bells and whistles at extra cost.

The difference between the Community Edition and the Professional Edition is only in the
cost and the license. Visual Studio Community Edition is free but is meant for students,
hobbyists, open-source projects, and individuals, even for commercial use. Large companies
do not fit into this category and must buy Professional. (If you have more than 250 computers,
make more than $1 million annually, or have more than five Visual Studio users, you’ll need
to pay for Professional.)

Visual Studio Community edition is my recommended choice for new C# programmers
running on Windows and is what this book uses throughout. (Though Professional and
Enterprise would work in the same way.)

Visual Studio Code
Microsoft Visual Studio Code is a lightweight editor (a step down from a fully-featured IDE)
that works on Windows, Mac, and Linux. Visual Studio Code is also free for everybody and has
a vibrant and growing community. It does not have nearly the same expansive feature set that
Visual Studio has, and in some places, the limited feature set is harsh; you sometimes have to
fall back to running commands on the command line. If you are used to command-line
interfaces, this cost is low. But if you’re new to programming, it may feel like an alien world.

I recommend Visual Studio Code as a secondary choice to the full Visual Studio. Use it if you
are on Linux or Mac and are comfortable with the command line. In these situations, the
lightweight nature of Visual Studio Code is pleasant.

Visual Studio for Mac
Visual Studio for Mac, once called Xamarin Studio, is a separate IDE for C# programming that
works on Mac. While it shares its name with Visual Studio, it is a different product with many
notable differences. Like Visual Studio (for Windows), this has Community, Professional, and
Enterprise editions. If you are on a Mac, this IDE is worth considering.

JetBrains Rider
The only non-Microsoft IDE on this list is the Rider IDE from JetBrains. Rider is a comparative
newcomer to the C# IDE world, though JetBrains is a veteran of the IDE world, having built
them for many other languages. JetBrains does not have a free tier as this book goes to
publication; the cheapest option is about $140 per year. But it is both feature-rich and cross-
platform. If you have the money to spend, this is a good choice on any operating system.

Other IDEs
There are other IDEs out there, but most C# programmers use one of the above. Other IDEs
tend to be missing lots of features, aren’t well supported, and have less online help and

INSTALLING VISUAL STUDIO 13

documentation. But if you find another IDE that you enjoy, go for it. The C# language will work
the same either way.

No IDE
You do not need an IDE to program in C#. If you are a veteran programmer, skilled at using
the command line, and accustomed to patching together different editors and scripts to
program in your own way, you can entirely skip the IDE. I do not recommend this approach
for new programmers. It is a bit like needing to build your car from parts before you can drive
it. For the seasoned mechanic, it may even be part of the enjoyment. Everybody else wants
something that they can hop in and drive. The IDEs above are in that category.

In short, at a high level, to work without an IDE in C# requires using the dotnet command-
line tool to create, compile, test, and package your programs. Even if you are using an IDE, you
may still find this a useful technique from time to time. (If you use Visual Studio Code, you will
need to use it from time to time.)

But if you are new to programming, start with an IDE and learn the basics first.

INSTALLING VISUAL STUDIO
While this book's focus is the C# language itself, when I need to illustrate some tasks requiring
an IDE, this book uses Visual Studio Community Edition. The Professional and Enterprise
Editions should be identical. Other IDEs are usually similar, but you will find differences.

Visual Studio Code is popular enough that I posted an article on the book’s website illustrating
how to get started with Visual Studio Code: http://csharpplayersguide.com/articles/visual-
studio-code.

You can download Visual Studio Community Edition from https://www.visualstudio.com/
downloads. The installation process is not substantially different than any other program, so
I’ll spare you the details of walking through the installer here, with one notable point: the link
above will install the Visual Studio Installer rather than Visual Studio itself. Once that is
installed, you will need to use it to install and configure Visual Studio.

You can use the Visual Studio Installer to install Community, Professional, or Enterprise. I
recommend just starting with Community, but this program manages all three of them.

As you begin installing Visual Studio, it will ask you which components to include:

http://csharpplayersguide.com/%E2%80%8Barticles/%E2%80%8Bvisual-studio-code
http://csharpplayersguide.com/%E2%80%8Barticles/%E2%80%8Bvisual-studio-code
https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads

14 LEVEL 2 GETTING AN IDE

With everything installed, Visual Studio is a lumbering, all-powerful behemoth. You do not
need every possible feature of Visual Studio. In fact, for what we will do in this book, we will
only need a small slice of what Visual Studio has to offer.

You can install whatever you find interesting (and have storage space for), but there is only
one item you must install for the code in this book. On the Workloads tab, find the one towards
the bottom named .NET Core cross-platform development and click on it to enable it. (If you
forget to do this, you can always rerun the Visual Studio Installer and change what
components you have installed.)

Once Visual Studio is installed, open it. (You may end up with a desktop icon, but you can
always find it in the Windows Start Menu under Visual Studio 2019.)

Visual Studio will ask you to sign in with a Microsoft account, even for the free Community
Edition. You can avoid it for 30 days, but it will require it eventually. If you don’t have one,
follow the instructions to make one. (It’s free.) Creating an account lets you sync your settings
across multiple devices, among other things.

If you are installing Visual Studio for your first time, you will also get a chance to pick
development settings—keyboard shortcuts and a color theme. In this book, I have used the
light theme because it looks clearer in print. Many developers are partial to the dark theme.
Whatever you pick can be changed later.

You know you are done when you make it to the launch screen shown below:

Challenge Install Visual Studio 75 XP
As your journey begins, you must start by getting the tools ready to start programming in C#. Install
Visual Studio Community edition (or another IDE) and get it ready to start programming.

LEVEL 3
HELLO WORLD: YOUR FIRST PROGRAM

 Speedrun
• New projects usually begin life by being generated from a template.
• A C# program starts running in the program’s entry point or main method.
• A full Hello World program looks like this: System.Console.WriteLine("Hello World!");
• Statements are single commands for the computer to perform. They run one after the next.
• Expressions allow you to define a value that is computed as the program runs from other elements.
• Variables let you store data for use later.
• Console.ReadLine() retrieves a full line of text that a user types from the console window.

Our adventure begins in earnest in this level, as we make our first real programs in C# and
learn the basics of the language. We’ll start with a simple program called Hello World, the
classic first program to write in any new language. It is about the smallest possible program
we could make. It gives us a glimpse into what the language looks like and verifies that we got
everything installed. Anything else would make the programming gods mad, and we don’t
want that!

CREATING A NEW PROJECT
A C# project is a combination of two things. The first is your C# source code—instructions you
write in C# for the computer to run. The second is configuration—instructions you give to the
computer to help it know how to compile or translate C# code into the binary instructions the
computer can run. Both of these live in simple text files on your computer. C# source code files
use the .cs extension. A project’s configuration uses the .csproj extension. Because these are
both simple text files, we could handcraft them ourselves if we needed to.

But most C# programs begin their life by being generated from one of several templates.
Templates are standard starting points; they help you get the configuration right for specific
project types and give you some starting code. We will use a template to create our projects.

16 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

Start Visual Studio so that you can see the launch screen below:

Click on the Create a new project button on the bottom right. Doing this advances you to the
Create a new project page:

There are many templates to choose from, and yours might not be a perfect match for what
you see above. For this book, we will always select the Console Application template. Be
careful! You want to make sure that the one you chose is the C# version (look at the tags) and
also not the one labeled Console Application (.NET Framework), which is an older template.

As you make progress in the C# world, you will use other templates.

After choosing the C# Console Application template, press the Next button to advance to a
page that lets you enter your new program’s details:

A BRIEF TOUR OF VISUAL STUDIO 17

Always give your projects a good name. You won’t remember what ConsoleApp12 did in two
weeks.

For the location, pick a spot that you can find later on. (The default location is fine, but it isn’t
a prominent spot, so take note of where it is.)

There is also a checkbox for Place solution and project in the same directory. For small
projects, I recommend checking this box. Larger programs (solutions) may be formed from
many projects. In that case, putting projects in their own directory (folder) under a solution
directory makes sense. But for small programs with a single project, it is simpler just to put
everything in a single folder.

Press the Next button to choose your target framework on the final page. You will want to pick
.NET 5 (or newer, if one is available) for this book.

Once you have chosen the framework, push the Create button to create the project.

A BRIEF TOUR OF VISUAL STUDIO
With a new project created, we get our first glimpse at the Visual Studio window:

Visual Studio is extremely capable, so there is much to explore. This book focuses on
programming in C#, not on becoming a Visual Studio expert; we won’t get into every detail of

18 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

Visual Studio here. However, we will cover some of the essential elements that help get the job
done as we go.

Right now, there are three things you need to know to get going. First, the big open area on the
left side with text is the Code Window or the Code Editor. You will spend most of your time
working here. Second, on the right side is the Solution Explorer. That shows you the high-level
view of your code and the configuration needed to turn it into working code. You will spend
only a little time here initially, but you will use this more as you begin to make larger programs.
Third, we will run our programs using the part of the Standard Toolbar shown below:

Bonus Level A covers Visual Studio in a bit of depth. You can read that level (and the other
bonus levels) whenever you are ready for it. Even though they are at the end of the book, they
don’t require knowing everything else before them. If you’re new to Visual Studio, I
recommend reading Bonus Level A before getting through too many more levels. It will give
you a better feel for Visual Studio.

COMPILING AND RUNNING YOUR PROGRAM
Generating a new project from the template has produced a complete program. Before we
start dissecting it, let’s run it.

The computer’s circuitry cannot run C# code itself. It only runs low-level binary instructions
formed out of 1’s and 0’s. Before the computer can run our program, we must transform it into
something it can run. This transformation is called compiling, done by a special program
called a compiler. The compiler takes your C# code and your project’s configuration and
produces the final binary instructions that the computer can run directly. (This is an
oversimplification, but it’s accurate enough for now.) The compiler creates an .exe or .dll file
as a result, which the computer can run.

Visual Studio makes it easy to compile and then immediately run your program with any of
the following: (a) choose Debug > Start Debugging from the main menu, (b) press F5, or (c)
push the green start button on the toolbar, shown below:

When you run your program, you will see a black and white console window appear:

Look at the first line:

THE ADVENTURE BEGINS 19

Hello World!

That’s what our program was supposed to do! (The rest of the text just tells you that the
program has ended and gives you instructions on how not to show it in the future. You can
ignore that text for now.)

Challenge Hello World! 50 XP
You open your eyes and find yourself face down on the beach of a large island, the waves crashing on the
shore not far off. A voice nearby calls out, “Hey, you! You’re finally awake!” You sit up and look around.
Somehow, opening your IDE has pulled you into the Realms of C#, a strange and mysterious land where
it appears that you can use C# programming to solve problems. The man comes closer, examining you.
“Are you okay? Can you speak?” Creating and running a “Hello World!” program seems like a good way to
respond.

Objectives:

• Create a new Hello World program from the C# Console Application template, targeting .NET 5.
• Run your program using any of the three methods described above.

THE ADVENTURE BEGINS
Let’s look at how to begin building C# programs. Every programming language has its own
distinct structure—its own set of rules that describe how to make a working program in that
language. This set of rules is called the language’s syntax. Learning the structure of C#
programs is covered on every page of this book, but this section gets us going by looking at the
most foundational structural elements.

Every C# program has a starting point—the place where the program begins running. This
location is called the program’s entry point or main method. C# has two ways to define an entry
point. One is the traditional way, which is what the template used. If you look at the code,
you’ll see a bunch of stuff that surrounds the central "Hello World!", including that whole
public static void Main(string[] args) thing. There is a lot of code out there that
uses this traditional approach because it was the original way. There is a newer way that is
streamlined and removes the clutter.

We will learn how to use the traditional way in Level 33, but the new way is simpler and easier
to understand. It is what we will use as we begin.

Take a glance at the code generated from the template so that you can spot it when you see it
in the wild, but then select all of the text and delete it, replacing it with just this single line:

System.Console.WriteLine("Hello World!");

This one line does exactly what all 12 of the previous lines did, just cleaner.

Let’s pick this code apart. The "Hello World!" part is self-explanatory. That is the text that
is displayed. But what about the rest?

System, Console, and WriteLine are all formally known as identifiers, or more casually as
names. Identifiers are used to name new things you create and to refer to things that were
previously created. System, Console, and WriteLine are each previously created things. We
didn’t make any of these; they are each part of the supporting cast of stuff you can build upon
found in .NET’s standard library, the Base Class Library.

20 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

Some things can contain other things. The thing inside something else is referred to as a
member of the container. The period symbol (.) is called the member access operator or the
dot operator. You use this to access a member contained in something else. So the thing called
System has a member called Console, which has a member called WriteLine, and our code
uses the dot operator to dig down from the top. We will use the dot operator a lot.

This shows C#’s organizational structure, but System, Console, and WriteLine are in very
different categories.

System is a namespace. It contains other things under a shared name and is primarily an
organizational tool, almost like a directory or folder in real life or a computer’s file system.
We’ll learn more about namespaces as we go, and Level 33 covers them in detail.

Console is a class. We will soon see how vital classes are to building C# programs (all of Part
2 focuses on this). You can think of a class as a single supporting entity that focuses on solving
one problem well. It combines the data it needs to perform its job and provides tasks other
parts of the system can ask it to do. The Console class’s focus is on interaction with the
console window.

WriteLine is one such task—one that takes text and displays it in the console window on its
own line. Tasks like WriteLine are called methods. Each method contains other code that will
run when something asks for the task to be performed. Methods are a powerful tool because
we can define what code is needed to complete the job once and then ask the task to run
whenever we need it. Parentheses are used (among other things) to tell a method to run. This
is called method invocation or calling a method. The parentheses of our WriteLine("Hello
World!") code do this.

Some methods allow you to supply some information for it to use when running the task. If a
method expects this, that information will be placed inside the parentheses. WriteLine
happens to expect this in the form of the text you want to be displayed. (Some methods let you
supply multiple pieces of information. We’ll see those soon.)

Thus the line System.Console.WriteLine("Hello World!"); finds the namespace
System, finds its member class called Console, finds its member method called WriteLine,
and asks it to run with the text "Hello World!".

This line constitutes what is called a statement. A statement is a single command to perform.
Most kinds of statements in C# need to end with a semicolon (;), as we see above.

C# executes statements top to bottom and left to right (though C# programmers typically put
one statement per line), one at a time. Statements are an essential building block.

One thing that may surprise new programmers is how specific you need to be when giving the
computer statements to run. Most humans can be given vague directives and then make
judgment calls to fill in the gaps. Computers have no such capacity. They do exactly what they
are told without variation. If it does something unexpected, then what you thought you
commanded and what you thought you commanded were not the same. Making the mental
shift from “The computer did something dumb” to “That was unexpected; why did it do that
instead of what I thought it would do?” is one of the most important abilities for a new
programmer to gain.

Fortunately for us, somebody already figured out how to instruct the computer to display text
in the console window and packaged it up in the pre-made bundle that is Console’s
WriteLine method. Leveraging other people’s code can save us a lot of time.

THE ADVENTURE BEGINS 21

C# ignores whitespace (spaces, tabs, newlines) as long as it can tell where one thing ends and
the next begins. We could have written the above line like this, and the compiler wouldn’t care:

System.
 Console . WriteLine
("Hello World!"
)
;

But which is easier for you to read? This is a critical point about writing code: You will spend
more time reading code than writing it. Do yourself a favor and go out of your way to make
code easy to understand, regardless of what the compiler is willing to allow.

using Directives
Let’s start making modifications to our simple Hello World program.

If we want to refer to a class to access its methods, we would generally need to refer to it
through its namespace. We can’t just refer to Console, but we must refer to it as
System.Console. If we use Console a bunch in a program, this will get annoying. It is like
referring to everybody you know by their full name all the time.

C# has a special type of statement that we can put at the top of a file to sidestep this. This
statement is called a using directive because it uses the word using. Here is an example:

using System;

For any namespace we repeatedly use in a C# source code file, we can add a using directive
for it at the top of the file and then skip the namespace later on in the file.

using System;
Console.WriteLine("Hello World!");

When the compiler encounters the identifier Console, it knows it should search in the
System namespace to see if it can find something by that name. We can skip the long
System.Console name—called a fully qualified name—and use a class’s simple name. We
will start using other things in the System namespace as well, and a single using System can
work for all of them at once.

We will use the System namespace a lot. For the rest of this book, you can assume that all code
samples are contained in a file that starts with using System;.

You may notice that when you type using into a C# code file, it changes colors (blue in most
color themes). That is because using is a keyword, which is a special word that the language
and compiler use to understand your intent. C# has over 100 keywords.

Challenge What Comes Next 50 XP
The man seems surprised that you’ve produced a working “Hello World!” program. “Been a while since I
saw somebody program like that around here. Do you know what you’re doing with that? Can you make
it do something besides just say ‘hello’?”

Build on your original Hello World program with the following:

Objectives:

• Replace the file’s contents with a using System; and Console.WriteLine("Hello World!");

22 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

• Change your program to say something (anything!) besides “Hello World!”

Multiple Statements
A C# program runs one statement at a time in the order they appear in the file. Putting multiple
statements into your program makes it do multiple things. The following code displays three
lines of text:

using System;

Console.WriteLine("Hi there!");
Console.WriteLine("My name is Dug.");
Console.WriteLine("I have just met you and I love you.");

Each line asks the Console class to perform its WriteLine method, just with different data
on each line. Once all statements in the program have been completed, the program ends.

Challenge The Makings of a Programmer 50 XP
The man, who tells you his name is Ritlin, asks you to follow him over to a few of his friends, fishing on
the dock. “This one here has the makings of a Programmer!” Ritlin says. The group looks at you with eyes
widening and mouths agape. Ritlin turns back to you and continues, “I haven’t seen nor heard tell of
anybody who can wield that power in a million clock cycles of the CPU. Nobody has been able to do that
since the Uncoded One showed up in these lands.” He describes the shadowy and mysterious Uncoded
One, an evil power that rots programs and perhaps even the world itself. The Uncoded One’s presence
has prevented anybody from wielding the power of programming, the only thing that might be able to
stop it. Yet somehow, you have been able to grab hold of this power anyway. Ritlin’s companions suddenly
seem doubtful. “Can you show them what you showed me? Use some of that Programming of yours to
make a program? Maybe something with more than one statement in it?”

Objectives:

• Make a program with 5 Console.WriteLine statements in it.
• Answer this question: How many statements do you think a program can contain?

Expressions
Our next building block is an expression. Expressions are bits of code that your program must
process or evaluate to determine what their result is. We use the same word in the math world
to refer to something like 3 + 4 or -2 × 4.5. Essentially, expressions let you define a value from
parts assembled into the final value as the program is running.

C# programs use expressions heavily. Anywhere that a value is needed, an expression can be
put in its place. Your program will first evaluate the expression and then use the result of that
evaluation in its place. While we do could this:

Console.WriteLine("Hi User");

We can also use an expression instead:

Console.WriteLine("Hi " + "User");

THE ADVENTURE BEGINS 23

The code "Hi " + "User" is an expression rather than a single value. As your program runs,
it will evaluate the expression to determine its value. This code shows that you can use +
between two text pieces to produce the combined text ("Hi User").

The + symbol is one of many operators that can be used to build expressions. We will learn
more as we go.

One thing that makes expressions powerful is how they can be built out of other expressions.
Most expressions are formed from parts that are expressions themselves. You can think of a
specific value like "Hi User" as the simplest type of expression. But if we wanted, we could
split "User" into "Us" + "er" or further still into "U" + "s" + "e" + "r". That isn’t very
practical, but it does illustrate how you can build expressions out of smaller expressions.
Simpler expressions are better than complicated ones that do the same job, but you have lots
of flexibility when you need it.

Variables
Variables are another essential building block of C# programs. Variables are containers for
data. They are called variables because their contents can change or vary as the program runs.
Before we can use a variable, we must indicate that we need one. This is called declaring the
variable. In doing so, we must provide a name for the variable and indicate its type. Once a
variable exists, we can place values in the variable to use later in the program. Doing so is
called assignment, or assigning a value to the variable. Once we have done that, we can use
the variable in expressions later on. All of this is shown below:

string name;
name = "User";
Console.WriteLine("Hi " + name);

The first line declares the variable with a type and a name. Its type is string, and its name is
name. We’ll get into more detail on variables in Level 5, but a string is just a fancy programmer
word for text. So this name variable can contain strings (text). The second line assigns it a value
of "User". The third line uses the variable in an expression. As your program runs, it will
evaluate the expression "Hi " + name by retrieving the current value out of the name
variable, then combining it with the constant value of "Hi ". We’ll see plenty more examples
of expressions and variables soon.

Expressions are fragments of code. Expressions are not statements, though most types of
statements can use expressions within them. Some statements are also expressions.
Expressions are an important building block in a C# program.

Reading Text from the Console
Some methods produce a result as a part of the job they were designed to do. This result can
be stored in a variable or used in an expression. For example, Console has a ReadLine
method that retrieves text that somebody types until they hit the Enter key. It is used like so:

Console.ReadLine()

ReadLine does not require any information to do its job, so the parentheses are empty. But
the result it produces can be used in other things. For example, this code stores the produced
value in the name variable:

24 LEVEL 3 HELLO WORLD: YOUR FIRST PROGRAM

string name;
name = Console.ReadLine();
Console.WriteLine("Hi " + name);

This code no longer displays the same text every time. It waits for the user to type in their name
and then displays a greeting to the user by name. (If you run this, you will see a blank screen.
Don’t be alarmed; it is merely waiting for you to enter your name. It would be better if we had
used WriteLine to display something like, “Enter your name:” first, so the user knew what we
were waiting for.)

When a method like this produces a value, programmers often say that it returns the value. So
you might say that Console.ReadLine() returns the text the user typed.

Challenge Consolas and Telim 50 XP
These lands have not seen Programming in a long time due to the blight of the Uncoded One. Even old
programs once made have crumbled to bits. Your skills with Programming are only fledgling now, but
you can still make a difference in these people’s lives. Maybe someday soon, your skills will have grown
strong enough to take on the Uncoded One directly. But for now, you decide to do what you can.

In the nearby city of Consolas, food is running short. Telim has a magic oven that can produce bread from
thin air. He is willing to share, but Telim is an Excelian, and Excelians love paperwork; they demand it for
all transactions—no exceptions. Telim will share his bread with the city if you can build a program that
will let him enter the names of those receiving it. A sample run of this program looks like this:

Bread is ready.
Who is the bread for?
RB
Noted: RB got bread.

Objectives:

• Make a program that runs as shown above, including taking a name from the user.

COMPILER ERRORS, DEBUGGERS, AND CONFIGURATIONS
There are a few loose ends that we should tie up before we move on and dive deeper into the
C# language. These are more about how programmers construct C# programs rather than the
language itself. These are compiler errors, debugging, and build configurations.

Compiler Errors
As you write C# programs, you will accidentally write some code that the compiler cannot
figure out. When this happens, the compiler can not transform your code into something the
computer can understand.

When this happens, you will see two things occur. When you try to build and run your
program, you will see the Error List window appear, listing problems that the compiler sees.
Double-clicking on an error takes you to the problematic line. You will also see broken code
underlined with a red squiggly line. You may even see this appear as you type.

You may often see the problem quickly, but other times, it may not be so obvious. Bonus Level
B provides suggestions for what to do when you cannot get your program to compile. As with
all of the bonus levels, feel free to jump over and do it whenever you have an interest or need.
You do not need to wait until you have completed all the levels before it.

COMPILER ERRORS, DEBUGGERS, AND CONFIGURATIONS 25

Debugging
Writing code that the compiler can understand is only the first step. It also needs to do what
you expected it to do. Trying to figure out why a program does not do what you expected and
then adjusting it is called debugging. It is a skill that takes practice, but Bonus Level C will show
you the tools you can use in Visual Studio to make this task less intimidating. Like the other
bonus levels, you can jump over and read them whenever you have an interest or a need
without reading everything before that.

Build Configurations
The compiler uses your source code and configuration data to produce software the computer
can run. In the C# world, configuration data is organized into different build configurations.
Each configuration provides different information to the compiler about how to build things.
By default, there are two configurations defined, and you don’t often need more. Those
configurations are the Debug configuration and the Release configuration. The two are mostly
the same. The main difference is that the Release configuration has optimizations turned on,
which allow the compiler to make certain adjustments so that your code can run faster
without changing what it does. (As an example, if you declare a variable and never use it,
optimized code will strip it out. Unoptimized code will leave it in.) The Debug configuration
has this turned off. When you are debugging your code, these optimizations can make it
harder to hunt down problems. As you are building your program, it is usually better to run
with the Debug configuration. When you’re ready to share your program with others, you
compile it with the Release configuration instead.

You can choose which configuration you’re using by picking it from the toolbar's dropdown
list, near where the green arrow button is to start your program.

LEVEL 4
COMMENTS

 Speedrun
• Comments let you put text in a program that the computer ignores, but that helps programmers

understand or remember what the code does.
• Anything after two slashes (//) on a line is a comment, as is anything between /* and */.

Comments are little bits of text placed into your program, meant to be annotations on the code
for yourself or other programmers, which the compiler ignores.

Comments have a variety of uses:

• You can add a description about how some tricky piece of code works, so you don’t have
to try to reverse engineer it from your code again.

• You can leave reminders in your code of things you still need to do. These are sometimes
called TODO comments.

• You can add documentation about how some specific thing should be used or works.
Documentation comments like this can be handy because somebody (even yourself) can
look at a piece of code that is meant to be reused in your program and know how it is
supposed to work without looking through every line of code.

• They are sometimes used to remove code from the compiler’s view temporarily. For
example, suppose some code is not working, and you want to remove the offending code
temporarily. In that case, you can turn the code into a comment until you are ready to
bring it back in. (This should only be temporary! Don’t leave large chunks of commented-
out code hanging around!)

There are three ways to put in a comment, though we will only discuss two of them here and
save the third for later.

You can start a comment anywhere within your code by placing two forward slashes (//).
Everything on the line after these two slashes will become a comment, which the compiler
will pretend doesn’t even exist. For example:

HOW TO MAKE GOOD COMMENTS 27

// This is a comment where I can describe what happens next.
Console.WriteLine("Hello World!");

Console.WriteLine("Hello again!"); // This is also a comment.

Some programmers have strong preferences for each of the two placements. My general rule
is to put more important comments above the code itself and only use comments that share
their line with code for side notes about that line of code.

As the second style of comments, placing something between the slash and star combination
of /* and */ will also make it a comment:

Console.WriteLine("Hi!"); /* This is a comment that ends here... */

You can use this to make both multi-line comments and embedded comments:

/* This is a multi-line comment.
 It spans multiple lines.
 Isn't it neat? */

Console.WriteLine("Hi " /* Here comes the good part! */ + userName);

That second example is awkward but does have its uses (especially when you’re commenting
out code that you want to ignore temporarily).

Of course, you can make multi-line comments with double-slash comments; you just have to
put the slashes on every line. Many C# programmers prefer double-slash comments over
multi-line /* and */ comments, but both are common.

HOW TO MAKE GOOD COMMENTS
The mechanics of adding comments are simple enough. The real challenge is in making
meaningful comments.

My first suggestion is not to let TODO or reminder comments (often in the form of // TODO:
Some message here) or commented out code last long. Both are meant to be short-lived.
They have no long-term benefit and only clutter the code.

Second, don’t say things that can be quickly gleaned from the code itself. The first comment
below adds no value, while the second one does:

// Uses Console.WriteLine to print "Hello World!"
Console.WriteLine("Hello World!");

// Printing "Hello World!" is a common first program to make.
Console.WriteLine("Hello World!");

The second comment explained why this was done, which isn’t apparent from looking at the
code itself.

Third, write comments roughly at the same time as you write the code. You will never
remember what the code did three weeks from now, so don’t wait to describe what it does.

Fourth, find the balance in how much you comment. It is entirely possible to add both too few
and too many comments. If you can’t make sense of your code when you revisit it after a
couple of weeks, you probably aren’t commenting enough. If you keep discovering that

28 LEVEL 4 COMMENTS

comments have gotten out of date, it is sometimes an indication that you are using too many
comments or putting the wrong information in comments. (Some corrections are expected as
code evolves.) As a new programmer, the consequences of too few comments are usually
worse than too many comments.

Don’t use comments to excuse hard-to-read code. Make the code as easy to understand as
possible, and then add just enough comments to fill in the missing details.

Challenge The Thing Namer 3000 100 XP
As you walk through the city of Commenton, admiring its forward-slash-based architectural buildings, a
young man approaches you in a panic. “I dropped my Thing Namer 3000 and broke it. I think it’s mostly
working, but all my variable names got reset! I don’t understand what they do!” He shows you the
following program:

using System;

Console.WriteLine("What kind of thing are we talking about?");
string a = Console.ReadLine();
Console.WriteLine("How would you describe it? Big? Azure? Tattered?");
string b = Console.ReadLine();
string c = "of Doom";
string d = "3000";
Console.WriteLine("The " + b + " " + a + " of " + c + " " + d + "!");

“You gotta help me figure it out!”

Objectives:

• Rebuild the program above on your computer.
• Add comments near each of the four variables that describe what they store. You must use at least

one of each comment type (// and /* */).
• Find the bug in the text displayed and fix it.
• Answer this question: Aside from comments, what is one other thing you could do to make this

code more understandable.

LEVEL 5
VARIABLES

 Speedrun
• A variable is a named location in memory for storing data.
• Variables have a type, a name, and a value (contents).
• Variables are declared (created) like this: int number;.
• Assigning values to variables is done with the assignment operator: number = 3;
• Using a variable name in an expression will copy the value out of the variable.
• Give your variables good names. You will be glad you did.

In this level, we will look at variables, first seen in Level 3, in more depth, including how to
declare them, put data into them, and pull data out of them. We will also look at some rules
around good variable names.

WHAT IS A VARIABLE?
A crucial part of building software is storing data in temporary memory to use later. For
example, we might store a player’s current score or remember a menu choice long enough to
respond to it. When we talk about memory and variables, we are talking about “volatile”
memory (or RAM) that sticks around while your program runs but is wiped out when your
program closes or the computer is rebooted. (To let data survive longer than the program, we
must save it to persistent storage in a file, which is the topic of Level 39.)

A computer’s total memory is gigantic. Even my old smartphone has 3 gigabytes of memory—
large enough to store 750 million different numbers. Each memory location has a unique
numeric memory address, which can be used to view any specific location's contents. But
remembering what spot #45387 is used for is not practical. Data comes and goes in a program.
We might need one thing for a split second and another for the whole time the program is
running. Plus, not all pieces of data are the same size. The text “Hello World!” takes up more
space than a single number does. We need something smarter than raw memory addresses.

30 LEVEL 5 VARIABLES

A variable solves this problem for us. Variables are named locations where
data is stored in memory. Each variable has three parts: its name, its type,
and its contents or data. A variable’s type is important because it lets us
know how many bytes to reserve for it in memory, and it also allows the
compiler to ensure that we are using its contents correctly.

The first step in using a variable is to declare it. Declaring a variable allows
the computer to reserve a spot in memory of the appropriate size for it.

After declaring a variable, you can assign values or contents to the variable. The first time you
assign a value to a variable is called initializing it. Before a variable is initialized, it is
impossible to know what bits and bytes might be in that memory location, so initialization
ensures we are always working with legitimate data.

While you can only declare a variable once, you can assign it different values over time as the
program runs. A variable for the player’s score can update as they collect points. The
underlying memory location remains the same, but the contents change with new values over
time.

The third thing you can do with a variable is to retrieve its current value. If we save off data for
later, we inevitably will want to come back to it. As long as a variable has been initialized, we
can retrieve its current contents whenever we need it.

CREATING AND USING VARIABLES IN C#
The following code shows all three primary variable-related activities:

string username; // Declaring a variable
username = Console.ReadLine(); // Assigning a value to a variable
Console.WriteLine("Hi " + username); // Retrieving its current value

A variable is declared by listing its type and its name together (string username;).

A variable is assigned a value by placing the variable name on the left side of an equal sign and
the new value on the right side. This new value may be an expression that the computer will
evaluate to determine the value (username = Console.ReadLine();).

Reading the variable's current value is done by simply using the variable’s name in an
expression ("Hi " + username). In this case, your program will start by retrieving the current
value in username. It then uses that value to produce the complete "Hi [name]" message.
The combined message is what is supplied to the WriteLine method.

You can declare a variable anywhere within your code. Still, because variables must be
declared before they are used, it is common for programmers to tend to put most or all
variable declarations at the top of their code.

Each variable can only be declared once, though your programs can create many variables.
You can assign new values to variables or retrieve the current value in a variable as often as
you want:

string username

username = Console.ReadLine();
Console.WriteLine("Hi " + username);

INTEGERS 31

username = Console.ReadLine();
Console.WriteLine("Hi " + username);

Given that username above is used to store two different usernames over time, it is reasonable
to reuse the variable. On the other hand, if the second value is supposed to represent
something else—say a favorite color—then it is better to make a second variable:

string username;
username = Console.ReadLine();
Console.WriteLine("Hi " + username);

string favoriteColor;
favoriteColor = Console.ReadLine();
Console.WriteLine("Hi " + favoriteColor);

Remember that variable names are meant for humans to use, not the computer. Pick names
that will help human programmers understand their intent. The computer does not care.

Declaring a second variable technically takes up more space in memory, but spending a few
extra bytes (when you have billions) to make the code more understandable is a clear win.

INTEGERS
Every variable and every value created in your C# programs has a type associated with it.
Before now, the only type we have seen has been strings—text. But many other types exist,
and we can even define our own types. Let’s look at a second type: int, representing an
integer.

An integer is a whole number (no fractions or decimals) but either positive, negative, or zero.
Given the computer’s capacity for doing math, it should be no surprise that storing numbers
is a common thing to do, and many variables use the int type. For example, all of these would
be well represented as an int: a player’s score, pixel locations on a screen, a file’s size, and a
country's population.

Declaring an int-typed variable is as simple as using the int type instead of the string type
when we declare it:

int score;

This score variable is now built to hold int values instead of text.

This type thing is important, so I’ll state it again: types matter in C#; every value and every
variable you create has a specific type, and the compiler will ensure that you don’t mix them
up. The following fails to compile because the types don’t match:

score = "Generic User"; // DOESN'T COMPILE!

The text "Generic User" is a string, but score’s type is int. This one is more subtle:

score = "0"; // DOESN'T COMPILE!

At least this looks like a number. But enclosed in quotes like that, "0" is a string representation
of a number, not an actual number. "0" is an example of what we call a literal value, or simply
a literal. A literal is where our C# code just outright states a fixed, known value. Literals are an

32 LEVEL 5 VARIABLES

important way to produce values in your program, with two other ways being user input and
evaluating expressions.

All literals have a type. A string literal is formed by enclosing the desired text in double-
quotes, as shown previously. An int literal is formed by writing out the integer without
quotes. The following uses an int literal to assign an initial value of 0 to score:

score = 0; // Works!

After this line of code runs, the score variable—a memory location reserved to hold ints
under the name score—has a value of 0.

The following shows that you can assign different values to score over time, as well as
negative numbers:

score = 4;
score = 11;
score = -1564;

READING FROM A VARIABLE DOES NOT CHANGE IT
When you read the contents of a variable, the variable’s contents are copied out. To illustrate:

int a;
int b;

a = 5;
b = 2;

b = a;
a = -3;

The first few lines are pretty straightforward. a and b are declared and given an initial value (5
and 2 respectively), which looks something like this:

On that fifth line, b = a;, the contents of a are copied out of a and replicated into b.

The variables a and b are distinct, each with its own copy of the data. a = b does not mean a
and b are now always going to be equal! That = symbol means assignment, not equality.
(Though a and b will happen to be equal immediately after running line 5.) Once the final line
runs, assigning a value of -3 to a, a will be updated as expected, but b retains the 5 it already

CLEVER VARIABLE TRICKS 33

had. If we displayed the values of a and b at the end of this program, we would see that a is -3
and b is 5.

There are some nuances to variable assignment, which we elaborate on in Level 14.

CLEVER VARIABLE TRICKS
Declaring and using variables is so common that there are some useful shortcuts to learn
before moving on.

The first is that you can declare a variable and initialize it on the same line, like this:

int x = 0;

This trick is so useful that virtually all experienced C# programmers would use this instead of
putting the declaration and initialization on back-to-back lines.

Second, you can declare multiple variables simultaneously if they are the same type:

int a, b, c;

Third, variable assignments are also expressions that evaluate to whatever the assigned value
was, which means you can assign the same thing to many variables all at once like this:

a = b = c = 10;

The value of 10 is assigned to c, but c = 10 is an expression that evaluates to 10, then assigned
to b. b = c = 10 evaluates to 10, and that value is placed in a. The above code is the same as
the following:

c = 10;
b = c;
a = b;

In my experience, this is not common practice, but it does have its uses.

And finally, while types matter, Console.WriteLine can display both strings and integers:

Console.WriteLine(42);

In the next level, we will introduce many more variable types. Console.WriteLine can
display every single one of them. That is, while types matter and are not interchangeable,
Console.WriteLine is set up to allow for it to work with any type. We will see how this works
and learn to do it ourselves in the future.

VARIABLE NAMES
You have a lot of control over what names you give to your variables, nut the language has a
few rules about what you can choose:

1. Variable names must start with a letter or the underscore character (_). (Though C# casts
a wide net when defining “letters”—almost anything in any language is allowed.) taco
and _taco are both legitimate variable names, but 1taco and *taco are not.

2. After the start, you can also use numeric digits (0 through 9).

34 LEVEL 5 VARIABLES

3. Most symbols and most whitespace characters are banned because they make it
impossible for the compiler to know where a variable name ends and other code begins.
(As an example, taco-poptart is not allowed because the - character is used for
subtraction. The compiler assumes this is an attempt to subtract something called
poptart from something called taco.)

4. You cannot name a variable the same thing as a keyword. For example, you cannot call a
variable int or string, as those are reserved, special words in the language.

I also recommend the following guidelines for naming variables:

1. Accurately describe what the variable holds. If the variable contains a player’s score,
score or playerScore are acceptable. But number and x are not descriptive enough.

2. Don’t abbreviate or remove letters. You spend more time reading code you previously
wrote than you do writing it, and if you must decode every variable name you encounter,
you’re doing yourself a disservice. What did plrscr (or worse, plain ps) stand for again?
Plural scar? Plastic Scrabble? No, just player score. Common acronyms like html or dvd
are an exception to this rule.

3. Don’t fret over long names. It is better to use a descriptive name than to “save characters.”
With any half-decent IDE, you can use features like AutoComplete to finish long names
after typing just a few letters anyway, and skipping the meaningful parts of names makes
it harder to remember what it does.

4. Names ending in numbers are a sign of poor names. With a few exceptions, variables
named number1, number2, and number3, do not distinguish one from another well
enough. (If they are part of a set that ought to go together, they should be packaged that
way; see Level 12.)

5. Avoid generic catch-all names. Names like item, data, text, and number are too vague
to be helpful in most cases.

6. Make the boundaries between multi-word names clear. A name like playerScore is
easier to read than playerscore. Two conventions among C# programmers are
camelCase (or lowerCamelCase) and PascalCase (or UpperCamelCase), which are
illustrated by the way their names are written. In the first, every word but the first starts
with a capital letter. In the second, every word, including the first, begins with a capital
letter. (The big capital letter in the middle of the word makes it look like a camel’s hump.)
Most C# programmers use lowerCamelCase for variables and use UpperCamelCase for
other things. I recommend sticking with that convention as you get started, but the choice
is yours.

Picking good variable names doesn’t guarantee readable code, but it goes a long way.

Knowledge Check Level 5 25 XP
Check your knowledge with the following questions:

1. Name the three things all variables have.
2. True/False. Variables must always be declared before being used.
3. How many times must a variable be declared?
4. Which of the following are legal C# variable names? answer, 1stValue, value1, $message, delete-

me, delete_me, PI.

Answers: (1) name, type, value. (2) True. (3) 1. (4) answer, value1, delete_me, PI.

LEVEL 6
THE C# TYPE SYSTEM

 Speedrun
• Types of variables and values matter in C#. They are not interchangeable.
• There are eight integer types for storing integers of differing sizes and ranges: int, short, long,

byte, sbyte, uint, ushort, and ulong.
• The char type stores single characters.
• The string type stores longer text.
• There are three types for storing real numbers: float, double, and decimal.
• The bool type stores truth values (true and false) used in logic.
• These types are the building blocks of a much larger type system.
• Using var for a variable’s type tells the compiler to infer its type from the surrounding code, so you

do not have to type it out. (But it still has a specific type.)
• The System.Convert class is a useful class to convert from one type to another.

In C#, types of variables and values matter (and must match), but we only know about two
types so far. In this level, we will introduce a diverse set of types we can use in our programs.
These types are called built-in types or primitive types. They are building blocks for more
complex types that we will see later.

REPRESENTING DATA IN BINARY
Why do types matter so much?

Every piece of data you want to represent in your programs must be stored in the computer’s
circuitry, limited to only the 1’s and 0’s of binary. If we're going to store a number, we need a
scheme for using bits (a single 1 or 0) and bytes (a group of 8 bits and the standard grouping
size of bits) to represent the range of possible numbers we want to store. If we're going to
represent a word, we need some scheme for using the bits and bytes to represent both letters
and sequences (strings) of letters. More broadly, for anything we might want to represent in a
program, we need a scheme for expressing it in binary.

36 LEVEL 6 THE C# TYPE SYSTEM

Each type defines its own rules for representing values in binary, and different types are not
interchangeable. You cannot take bits and bytes meant to represent a number and reinterpret
those bits and bytes as a string and expect to get meaning out of it. Nor can you take bits and
bytes meant to represent text and reinterpret them as an integer and expect it to be meaningful
either. They are not the same, and there’s no getting around it.

That doesn’t mean that each type is a world unto itself that can never interact with the other
worlds. We can and will convert from one type to another frequently. But the costs associated
with conversion are not free, so we do it conscientiously rather than accidentally.

Notably, C# does not invent new schemes and rules for most of its types. The computing world
has developed schemes for common types like numbers and letters, and C# reuses these
schemes when possible. The physical hardware of the computer also uses these same
schemes. Since it is baked into the circuitry, it can be fast.

The specifics of these schemes are beyond this book’s scope, but let’s do a couple of thought
experiments to explore.

Suppose we want to represent the numbers 0 through 10. We need to invent a way to describe
each of these numbers with only 0’s and 1’s. Step 1 is to decide how many bits to use. One bit
can store two possible states (0 and 1), and each bit you add after that doubles the total
possibilities. We have 11 possible states, so we will need at least 4 bits to represent all of them.
Step 2 is to figure out which bit patterns to assign to each number. 0 can be 0000. 1 can be
0001. Now it gets a little more complicated. 2 is 0010, and 3 is 0011. (We’re counting in binary
if that happens to be familiar to you.) We’ve used up all possible combinations of the two bits
on the right and need to use the third bit. 4 is 0100, 5 is 0101, and so on, all the way to 10,
which is 1010. We have some unused bit patterns. 1011 isn’t anything yet. We could go all the
way up to 15 without needing any more bits.

We have one problem: the computer doesn’t give us a way to deal with anything smaller than
full bytes. Not a big deal; we’ll just use a full byte of eight bits.

If we want to represent letters, we can do a similar thing. We could assign the letter A to
01000001, B to 01000010, and so on. (C# uses two bytes for every character.)

If we want to represent text (a string), we can use our letters as a building block. Perhaps we
could use a full byte to represent how many letters long our text is and then use two bytes for
each letter in the word. This is tricky because short words need to use fewer bytes than longer
words, and our system has to account for that. But it is a scheme that works.

We don’t have to invent these schemes for types ourselves, fortunately. The C# language has
taken care of them for us. But hopefully, this illustrates why we can’t magically treat an integer
and a string as the same thing. (Though we will be able to convert from one type to another.)

INTEGER TYPES
Let’s explore the basic types available in a C# program, starting with the types used to
represent integers. While we used the int type in the previous level, there are eight different
types for working with integers. These eight types are called integer types or integral types.
Each uses a different number of bytes, which allows you to store bigger numbers while using
more memory or store smaller numbers while conserving memory.

The int type uses 4 bytes and can represent numbers in the range of roughly -2 billion to +2
billion. (The specific numbers are in the table below.)

INTEGER TYPES 37

In contrast, the short type uses 2 bytes and can represent numbers in the range of -32,000 to
+32,000. The long type uses 8 bytes and can represent numbers in the range of -9 quintillion
to +9 quintillion (a quintillion is a billion billion).

Their sizes and ranges tell you when you might choose short or long over int. If memory is
tight and a short’s range is sufficient, you can use a short. If you need to represent numbers
larger than what an int can handle, you need to move up to a long, even at the cost of more
bytes.

The short, int, and long types are signed types; they include a positive or negative sign and
store positive and negative values. If you know you only need positive numbers, you could
imagine shifting the range of each of these types upward to exclude any negative values but
twice as many positive values. This is what the unsigned types are for: ushort, uint, and
ulong. Each of these uses the same number of bytes as their signed counterpart, cannot store
negative numbers, but can store twice as many positive numbers. Thus ushort’s range is
roughly 0 to about 65,000, uint’s range is roughly 0 to 4 billion, and ulong’s range is roughly
0 to 18 quintillion.

The last two integer types are a little different. The first is the byte type, using a single byte to
represent values from 0 to 255 (unsigned). While integer-like, the byte type is more often used
to express a byte or collection of bytes with no specific structure (or none known to the
program). The byte type has a signed counterpart, sbyte, representing values in the range -
128 to +127. The sbyte type is not used very often but makes the set complete.

The table below summarizes this information.

Name Bytes Allow Negatives Minimum Maximum

byte 1 No 0 255

short 2 Yes -32,768 32,767

int 4 Yes -2,147,483,648 2,147,483,647

long 8 Yes -9,223,372,036,854,775,808 9,223,372,036,854,775,807

sbyte 1 Yes -128 127

ushort 2 No 0 65,536

uint 4 No 0 4,294,967,295

ulong 8 No 0 18,446,744,073,709,551,615

Declaring and Using Variables with Integer Types
Declaring variables of these other types is as simple as declaring them with these type names
instead of int or string, as we have done before:

byte aSingleByte = 34;
aSingleByte = 17;

short aNumber = 5039;
aNumber = -4354;

long aVeryBigNumber = 395904282569;
aVeryBigNumber = 13;

38 LEVEL 6 THE C# TYPE SYSTEM

In the past, we saw that writing out a number directly in our code creates an int literal. But
this brings up an interesting question. How do we create a literal that is a byte literal or a
ulong literal?

For things smaller than an int, nothing special is needed to create a literal of that type:

byte aNumber = 32;

The 32 is an int literal, but the compiler is smart enough to see that you are trying to store the
literal value in a byte and can ensure by inspection that 32 is within the allowed range for a
byte. The compiler handles it. In contrast, if you used a literal that was too big for a byte, you
would get a compiler error, preventing you from compiling and running your program.

This same rule also applies to sbyte, short, and ushort.

If your literal value is too big to be an int, it will automatically become a uint literal, a long
literal, or a ulong literal, the first of those capable of representing the number you typed. (If
you make a literal whose value is too big for everything, you will get a compiler error.) To
illustrate how these bigger literal types work, consider this code:

long aVeryBigNumber = 10000000000; // 10 billion would be a long literal.

You may find that you want to force a smaller number to be one of the larger literal types on
rare occasions. You can force this by putting a U or L (or both) at the end of the literal value:

ulong aVeryBigNumber = 10000000000U;
aVeryBigNumber = 10000000000L;
aVeryBigNumber = 10000000000UL;

A U signifies that it is unsigned and must be either a uint or ulong. L indicates that the literal
must be a long or a ulong, depending on the size. A UL indicates that it must be a ulong.
These suffixes can be uppercase or lowercase and in either order. However, avoid using a
lowercase l because that looks too much like a 1.

You shouldn’t need these suffixes very often.

The Digit Separator
As humans, when we write a long number like 1,000,000,000, we often use a separator like a
comma to make interpreting the number easier. While we can’t use the comma for that in C#,
there is an alternative: the underscore character (_).

int bigNumber = 1_000_000_000;

The normal convention for writing numbers is to group them by threes (thousands, millions,
billions, etc.), but the C# compiler does not care where these appear in the middle of numbers.
In situations where a different grouping makes more logical sense, use it that way. All the
following are allowed:

int a = 123_456_789;
int b = 12_34_56_78_9;
int c = 1_2__3___4____5;

Choosing Between the Integer Types
With eight types for storing integers, how do you decide which one to use?

TEXT: CHARACTERS AND STRINGS 39

On the one hand, you could carefully consider the possible range of values you might want for
any variable and then pick the smallest (to save on memory usage) that can fit the intended
range. For example, if you need a player’s score and know it can never be negative, you have
cut out half of the eight options right there. If the player’s score may be in the hundreds of
thousands in any playthrough, you can rule out byte and ushort because they’re not big
enough. That leaves you with only uint and ulong. If you think a player’s score might
approach 4 billion, you’d better use ulong, but if scores will get only into the millions, then a
uint is safe. (You can always change the types of a variable and recompile your program if
you got it wrong—software is soft after all—but it is easier to have just been right the first time.)

The strategy of picking the smallest practical range for any given variable has merit, but it has
two things going against it that make a different strategy more common. The first is that in
modern programming, rarely does saving a single byte of space matter. There is too much
memory around to fret over individual bytes. The second is that computers do not have
hardware that supports math with smaller types. The computer upgrades them to ints and
runs the math as ints, forcing you to then go to the trouble of converting the result back to
the smaller type. The int type is more convenient to work with than sbyte, byte, short, and
ushort if you are doing many math operations with them.

Thus, the more common strategy is to use int, uint, long, or ulong as necessary and only
use byte, sbyte, short, and ushort when there is a clear and obvious benefit.

Binary and Hexadecimal Literals
The integer literals we have written so far have all been written using base 10, the normal 10-
digit system humans are typically used to. But in the programming world, it is occasionally
easier to write out the number using either base 2 (binary digits) or base 16 (hexadecimal
digits, which are 0 through 9, and then the letters A through F).

To write a binary literal, start your number with a 0b. For example:

int thirteen = 0b00001101;

For a hexadecimal literal, you start your number with 0x:

int theColorMagenta = 0xFF00FF;

This example shows one of the places where this might be useful. Colors are often represented
as either six or eight hexadecimal digits.

TEXT: CHARACTERS AND STRINGS
There are more numeric types, but let’s turn our attention away from numbers for a moment
and look at representing single letters and longer text.

In C#, the char type represents a single character, while our old friend string represents text
of any length.

The char type is very closely related to the integer types. (It is even lumped into the integral
type banner with the rest of the integer types.) Each character of interest is given a number
representing it, which amounts to a unique bit pattern. The char type is not limited to just
keyboard characters. The char type uses two bytes to allow for a total of 65,537 distinct
characters. The number assigned to each character follows a widely used standard called

40 LEVEL 6 THE C# TYPE SYSTEM

Unicode. This set covers English characters and every character in every human-readable
language and a whole slew of other random characters and emoji. A char literal is made by
placing the character in single quotes:

char aLetter = 'a';
char baseball = '⚾';

You won’t find too many uses for the extremely esoteric characters (the console window does
not know how to display the baseball character above). Still, the diversity of characters
available is nice.

If you know the hexadecimal Unicode number for a symbol and would prefer to use that, you
can write that out after a \u:

char aLetter = '\u0061'; // An 'a'

The string type aggregates many characters into a sequence to allow for arbitrary text to be
represented. The word “string” comes from the math world, where a string is a sequence of
symbols chosen from a defined set of allowed symbols, one after the other, of any length. It is
a word that the programming world has stolen from the math world, and most programming
languages refer to this idea as strings.

A string literal is made by placing the desired text in double-quotes:

string message = "Hello World!";

FLOATING-POINT TYPES
We now return to the number world to look at types that represent numbers besides integers.
How do we represent 1.21 gigawatts or the number π?

C# has three types that are called floating-point data types. These represent what
mathematicians call “real numbers,” which includes integers and numbers with a decimal or
fractional component. While we cannot represent 3.1415926 as an integer (3 is the best we
could do), we can represent it as a floating-point number.

The “point” in the name refers to the decimal point that often appears when writing out these
numbers.

The “floating” part comes because it contrasts with fixed-point types. With a fixed-point type,
the number of digits before and after the decimal point is locked in place. With a floating-point
type, the decimal point may appear anywhere within the number. C# does not have fixed-
point types because they prevent you from using very large or very small numbers efficiently.
In contrast, floating-point numbers let you represent a specific number of significant digits
and scale them to be big or small. For example, they allow you to express the numbers
1,250,421,012.6 and 0.00000000000012504210126 equally well, which is something a fixed-
point representation cannot reasonably do.

With floating-point types, some of the bits can store the significant digits (which affects how
precise you can be), while other bits define how much to scale it up or down (which affects
the magnitudes you can represent). The more bits you use, the more of either you can do.
Once again, this scheme is not a C# invention but one broadly used across the computing
world.

There are three flavors of floating-point numbers: float, double, and decimal. The float
type uses 4 bytes, while double uses twice that many (hence the “double”) at 8 bytes. The

FLOATING-POINT TYPES 41

decimal type uses 16 bytes. While float and double follow conventions used across the
computing world, decimal is not. That means float and double are faster. However,
decimal uses most of its bits for storing significant figures—it is by far the most precise
floating-point type. If you are doing something that needs extreme mathematical precision,
even at the cost of speed, decimal is the better choice.

All floating-point numbers have ranges that are mind-boggling in size and can only
reasonably be represented in scientific notation. An example of this notation is 2×105. If this
format is not familiar to you, a rough approximation is to focus solely on the exponent—the 5
in the previous example. To convert this to a “normal” notation, write a one followed by that
many zeroes. 2×105 is approximately 100000. If the number is negative, then write out that
many zeroes followed by a 1, then put the decimal point after the first zero. 2×10-5 is
approximately 0.00001. With that in mind, we can look at the ranges floating-point types can
represent.

A float can store numbers as small as 3.4×10-45 and as large as 3.4×1038. That is small enough
to measure quarks and large enough to measure the visible universe many times over. A float
has 6 to 7 digits of precision, depending on the number, meaning it can represent the number
10000 and the number 0.0001, but not quite the resolution to differentiate between 10000 and
10000.0001.

A double can store numbers as small as 5×10-324 and as large as 1.7×10308, with 15 to 16 digits
of precision.

A decimal can store numbers as small as 1.0×10-28 and as large as 7.9×1028, with 28 to 29 digits
of precision.

(I’m not going to write out all of those numbers in normal notation, but it is worth imagining
what they might look like.)

All three floating-point representations are insane in size, but seeing the exponents, you
should have a feel for how they compare to each other. The float type uses the fewest bytes,
and its range and precision are good enough for almost everything. The double type can store
the biggest big numbers and the smallest small numbers with even more precision than a
float. The decimal type’s range is the smallest of the three but is the most precise and is great
for calculations where accuracy matters (like financial or monetary calculations).

The table below summarizes how these types compare to each other:

Type Bytes Range Digits of Precision Hardware Supported

float 4 ±1.0e-45 to ±3.4e38 7 Yes

double 8 ±5e-324 to ±1.7e308 15-16 Yes

decimal 16 ±1.0 × 10e-28 to ±7.9e28 28-29 No

Creating variables of these types is the same as any other type, but it gets more interesting
when you make float, double, and decimal literals:

double number1 = 3.5623;
float number2 = 3.5623f;
decimal number3 = 3.5623m;

If a number literal contains a decimal point, it becomes a double literal instead of an integer
literal. Appending an f or F onto the end (with or without the decimal point) makes it a float

42 LEVEL 6 THE C# TYPE SYSTEM

literal. Appending an m or M onto makes it into a decimal literal. (The “m” is for “monetary”
or “money.” Financial calculations often need extremely high precision.)

All three types can represent a bigger range than any integer type, so if you use an integer
literal, the compiler will automatically convert it.

Scientific Notation
As we saw when we first introduced the range floating-point numbers can represent, really big
and really small numbers are more concisely represented in scientific notation. For example,
6.022×1023 instead of 602,200,000,000,000,000,000,000. (That number, by the way, is called
Avogadro’s Number, a number with special significance in chemistry.) The × symbol is not one
on a keyboard, so for decades, scientists have written a number like 6.022×1023 as 6.022e23,
where the e stands for “exponent.” Floating-point literals in C# can use this same notation by
embedding an e or E in the number:

double avogadrosNumber = 6.022e23;

THE BOOL TYPE
The final type that we will cover in this chapter is the bool type. The bool type might seem
like the strangest type if you are new to programming, but we will see its value before long.
The bool type gets its name from Boolean logic, which was named after its creator, George
Boole. The bool type represents “truth” values. These are used in decision making, which we
will cover in Level 9. It has two possible options: true and false. Both of those are bool
literals that you can write into your code:

bool itWorked = true;
itWorked = false;

Some languages treat bool as nothing more than fancy ints, with false being the number 0
and true being anything else. But C# delineates ints from bools because conflating the two
is a pathway to lots of common bug categories.

A bool could theoretically use just a single bit, but it uses a whole byte.

Challenge The Variable Shop 100 XP
You see an old shopkeeper struggling to stack up variables in a window display. “Hoo-wee! All these
variable types sure are exciting but setting them all up to show them off to excited new programmers
like yourself is a lot of work for these aching bones,” she says. “You wouldn’t mind helping me set up this
program with one variable of every type, would you?”

Objectives:

• Build a program with a variable of all fourteen types described in this level.
• Assign each of them a value using a literal of the right type.
• Use Console.WriteLine to display the contents of each variable.

TYPE INFERENCE 43

Challenge The Variable Shop Returns 50 XP
“Hey! Programmer!” It’s the shopkeeper from the Variable Shop who hobbles over to you. “Thanks to
your help, variables are selling like RAM cakes! But these people just aren’t programmers like you. They
keep asking how to modify the values of the variables they’re buying, and… well… frankly, I have no clue.
But you’re a programmer, right? Maybe you could show me so I can show my customers?”

Objectives:

• Modify your Variable Shop program to assign a new, different literal value to each of the 14 original
variables. Do not declare any additional variables.

• Use Console.WriteLine to display the updated contents of each variable.

This level has introduced the 14 most fundamental types of C#. It may seem a lot to take in,
and you may still be wondering when exactly you should use one type over another. But don’t
worry too much. This level will always be here as a reference when you need it.

These are not the only possible types in C#. They are more like chemical elements, serving as
the basis or foundation for producing other types.

TYPE INFERENCE
Types matter greatly in C#. Every variable and each value has a specific, known type. We have
been very specific when declaring variables to call out each variable’s type. But the compiler
is very smart. It can often look at your code and figure out (“infer”) what type something is
from clues and cues around it. This feature is called type inference. It is the Sherlock Holmes
of the compiler.

Type inference is used for many language features, but a notable one is that the compiler can
infer the type of a variable based on the code that it is initialized with. You don’t need to write
out a variable’s type yourself in many cases. You can use the var keyword instead:

var message = "Hello World!";

The compiler can tell that "Hello World!" is a string, and therefore, message must be a
string for this code to work. Using var tells the compiler, “You’ve got this. I know you can
figure it out. I’m not going to bother writing it out myself.”

This only works if you initialize the variable on the same line that you declare it. Otherwise,
there is not enough information for the compiler to infer its type. This won’t work:

var x; // DOES NOT COMPILE!

There are no clues to use in performing type inference, so the type inference fails. You will
have to fall back to using specific, named types.

In Visual Studio, you can easily see what type the compiler inferred by hovering the mouse
over the var keyword until the tooltip appears, which shows the inferred type.

Many programmers prefer to use var everywhere they possibly can. It is often shorter and
cleaner, especially when we start using things with longer type names.

But there are two potential problems to consider with var.

44 LEVEL 6 THE C# TYPE SYSTEM

The first is that the computer sometimes infers the wrong type. These errors are sometimes
subtle.

The second problem is that the computer is faster at inferring a variable’s type than a human.
Consider this code:

var input = Console.ReadLine();

The computer can infer that input is a string since it knows ReadLine produces strings
as a result. As a human, I need to have that information in my head already to infer it.

It is worse when the code comes from the Internet or a book because you don’t necessarily
have all of the information to figure it out. For that reason, I will avoid var in this book.

My recommendation is that you skip var and use specific types as you start working in C#.
Doing this helps you think about types more carefully. After some practice, if you want to
switch to var, go for it.

I want to make this next point very clear, so pay attention: a variable that uses var still has a
specific type. It isn’t a mystery type, a changeable type, or a catch-all type. It still has a specific
type; we have just left it unwritten. This does not work:

var something = "Hello";
something = 3; // ERROR! Cannot store an int in a string-typed variable.

THE CONVERT CLASS
With 14 types at our disposal, we will need to be able to convert between types. The easiest
way to do this is with the Convert class. The Convert class is like the Console class—a thing
in the system that provides you with a set of tasks or capabilities that it can perform. While
Console is for working with the console window, Convert is for converting between these
different built-in types. To illustrate:

Console.Write("What is your favorite number?");
string favoriteNumberText = Console.ReadLine();
int favoriteNumber = Convert.ToInt32(favoriteNumberText);
Console.Write(favoriteNumber + " is a great number!");

You can see that Convert’s ToInt32 method needs a string as an input and gives back or
returns an int as a result, converting the text in the process. The Convert class has
ToWhatever methods to convert among the built-in types, though some names are a bit
surprising:

Method Name Target Type Method Name Target Type

ToByte byte ToSByte sbyte

ToInt16 short ToUInt16 ushort

ToInt32 int ToUInt32 uint

ToInt64 long ToUInt64 ulong

ToChar char ToString string

ToSingle float ToDouble double

ToDecimal decimal ToBoolean bool

THE CONVERT CLASS 45

Most of the names above are straightforward, though a few deserve a bit of explanation. The
names are not a perfect match because the Convert class is part of .NET’s Base Class Library,
which all .NET languages use. No two languages use the same name for things like int and
double.

 The short, int, and long types, along with their unsigned counterparts, use the word Int
and the number of bits they use. For example, a short uses 16 bits (2 bytes), so ToInt16
converts to a short.

The other surprise is that converting to a float is ToSingle instead of ToFloat. But a
double is considered “double precision,” and a float is “single precision,” which is where the
name comes from.

All input from the console window starts as strings. Many of our programs will need to
convert text that a user enters and process it. The process of analyzing text, breaking it apart,
and transforming it into other data is called parsing. The Convert class is a great starting point
for parsing text, though we will learn more tools for this over time as well.

Knowledge Check Level 6 25 XP
Check your knowledge with the following questions:

1. True/False. The int type can store any possible integer.
2. Order the following by how large their range is, from smallest to largest: short, long, int, byte.
3. True/False. The byte type is signed.
4. Which can store higher numbers, int or uint?
5. What three types can store floating-point numbers?
6. Which of the options in question 5 can hold the largest numbers?
7. Which of the options in question 5 is the most precise?
8. What type does the literal value "8" (including the quotes) have?
9. What type stores true or false values?

Answers: (1) false. (2) byte, short, int, long. (3) false. (4) uint. (5) float, double,
decimal. (6) double. (7) decimal. (8) string. (9) bool.

LEVEL 7
MATH

 Speedrun
• Addition (+), subtraction (-), multiplication (*), division (/), and remainder (%) can all be used to do

math in expressions: int a = 3 + 2 / 4 * 6;
• The + and - operators can also be used to indicate a sign (or negate a value): +3, -2, or -a.
• Operator precedence (order of operations) matches the math world. Multiplication and division

happen before addition and subtraction, and things are evaluated left to right.
• Change the order by using parentheses to group things you want to be done first.
• Compound assignment operators (+=, -=, *=, /=, %=) are shortcuts that adjust a variable with a math

operation. a += 3; is the same as a = a + 3;

• The increment and decrement operators add and subtract one: a++; b--;
• Each of the numeric types defines special values for their ranges (int.MaxValue,

double.MinValue, etc.), and the floating-point types also define PositiveInfinity,
NegativeInfinity, and NaN.

• Integer division drops remainders while floating-point division does not. Dividing by zero in either
system is bad.

• You can convert between types by casting: int x = (int)3.3;
• The Math and MathF classes contain a collection of useful utility methods for dealing with common

math operations such as Abs for absolute value, Pow and Sqrt for powers and square roots, and Sin,
Cos, and Tan for the trigonometry functions sine, cosine, and tangent, as well as a definition of π
(Math.PI)

Computers were built for math, and it is high time we saw how to make the computer do some
basic arithmetic.

OPERATIONS AND OPERATORS 47

OPERATIONS AND OPERATORS
Let’s define a few terms to get started. An operation is a calculation that takes (usually) two
numbers and produces a single result by combining them somehow. Each operator indicates
how the numbers are combined, and a particular symbol represents each operator. For
example, 2 + 3 is an operation. The operation is addition, shown with the + symbol. The
things that an operation use—the 2 and 3 here—are referred to as operands.

Most operators need two operands. These are called binary operators (“binary” meaning
“composed of two things”). An operator that needs one operand is a unary operator, while one
that needs three is a ternary operator. C# has many binary operators, a few unary operators,
and a single ternary operator.

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION
C# borrows the operator symbols from the math world where it can. For example, to add
together 2 and 3 and store its result into a variable looks like this:

int a = 2 + 3;

The 2 + 3 is an operation, but all operations are also expressions. When our program runs, it
will take these two values and evaluate them using the operation listed. This expression
evaluates to a 5, which is the result placed in a’s memory.

The same thing works for subtraction:

int b = 5 - 2;

Arithmetic like this can be used in any expression, not just when initializing a variable:

int a; // Declaring the variable a.
a = 9 - 2; // Assigning a value to a, using some math.
a = 3 + 3; // Another assignment.

int b = 3 + 1; // Declaring b and assigning a value to b all at once.
b = 1 + 2; // Assigning a second value to b.

Operators do not need literal values; they can use any expression. For example, the code
below uses more complex expressions that contain variables:

int a = 1;
int b = a + 4;
int c = a - b;

That is important. Operators and expressions allow us to work through some process
(sometimes called an algorithm) to compute some result that we care about, step by step.
Variables can be updated over time as our process runs.

Multiplication uses the asterisk (*) symbol:

float totalPies = 4;
float slicesPerPie = 8;
float totalSlices = totalPies * slicesPerPie;

Division uses the forward slash (/) symbol.

48 LEVEL 7 MATH

double moneyMadeFromGame = 100000;
double totalProgrammers = 4;
double moneyPerPerson = moneyMadeFromGame / totalProgrammers; // We're rich!

These last two examples show that you can do math with any numeric type, not just int. There
are some complications when we intermix types in math expressions and or use the “small”
integer types (byte, sbyte, short, ushort). For the moment, let’s stick with a single type and
avoid the small types. We’ll address those problems before the end of this level.

COMPOUND EXPRESSIONS AND ORDER OF OPERATIONS
So far, our math expressions have involved only a single operator at a time. But like in the math
world, our math expressions can combine many operators. For example, the following uses
two different operations in a single expression:

int result = 2 + 5 * 2;

When this happens, the trick is understanding which operation happens first. If we do the
addition first, the result is 14. If we do the multiplication first, the result is 12.

There is a set of rules that governs what operators are evaluated first. This ruleset is called the
order of operations. There are two parts to this: (1) operator precedence determines which
operation types come before others (multiplication before addition, for example), and (2)
operator associativity tells you whether two operators of the same precedence should be
evaluated from left to right or right to left.

Fortunately, C# steals the standard mathematical order of operations (to the extent that it
can), so if you are familiar with the order of operations in math, it will all feel natural to you.

C# has many operators beyond just addition, subtraction, multiplication, and division, so the
full ruleset is complicated. (See the Operators table in the back of the book for the whole
picture.) For now, it is enough to say that the following two rules apply:

• Multiplication and division are done first, left to right.
• Addition and subtraction are done last, left to right.

With these rules, we can know that the expression 2 + 5 * 2 will evaluate the multiplication
first, turning it into 2 + 10, and then the addition is done next, for a final result of 12, which
is what is stored in result.

If you ever need to override the natural order of operations, there are two tools you can use.
The first is to move the part you want to be done first to its own statement. Statements run
from top to bottom, so doing this will force an operation to happen before another:

int partialResult = 2 + 5;
int result = partialResult * 2;

This trick is handy when a single math expression has grown too big to understand at a glance.

The other option is to use parentheses. Parentheses create a sub-expression that is evaluated
first:

int result = (2 + 5) * 2;

Parentheses force the computer to do 2 + 5 before the multiplication. The math world uses
this same trick.

COMPOUND EXPRESSIONS AND ORDER OF OPERATIONS 49

In the math world, square brackets ([and]) and curly braces ({ and }) are sometimes used
as more “powerful” grouping symbols. C# uses those symbols for other things, so instead, you
just use multiple sets of parentheses inside of each other:

int result = ((2 + 1) * 8 - (3 * 2) * 2) / 4;

Remember though: the goal isn’t to cram it all into a single line, but to write code you’ll be
able to understand when you come back to it in two weeks.

Let’s walk through another example. This code computes the area of a trapezoid:

// Some simple code for the area of a trapezoid
(http://en.wikipedia.org/wiki/Trapezoid)

double side1 = 4.5;
double side2 = 3.5;
double height = 1.5;

double areaOfTrapezoid = (side1 + side2) / 2.0 * height;

Parentheses are evaluated first, so we start by resolving the expression side1 + side2. Our
program will retrieve the values in each of those variables and then perform the addition (a
value of 8). At this point, the overall expression could be thought of as the simplified 8.0 /
2.0 * height. Division and multiplication have the same precedence, so we divide before
we multiply because those are done left to right. 8.0 / 2.0 is 4.0, and our expression is
simplified again to 4.0 * height. Multiplication is now the only operation left to address,
so we perform it by retrieving the value in height (1.5) and multiplying for a final result of
6.0. That is the value we place into the areaOfTrapezoid variable.

Challenge The Triangle Farmer 100 XP
As you pass through the fields near Arithmetica City, you encounter P-Thag, the triangle farmer,
scratching numbers in the dirt.

“What is all of that writing for?” you ask.

“I’m just trying to calculate the area of all of my triangles. They sell by their size. The bigger they are, the
more they are worth! But I have many triangles on my farm, and the math gets tricky, and I sometimes
make mistakes. Taking a tiny triangle to town thinking you’re going to get 100 gold, only to be told it’s
only worth three, is not fun! If only I had a program that could help me….” Suddenly, P-Thag looks at you
with new eyes. “Wait just a moment. You have the look of a Programmer about you. Can you help me
write a program that will compute my triangles' areas for me, so I can quit worrying about math mistakes
and get back to tending to my triangles? The equation I’m using is this one here,” he says, pointing to the
formula, etched in stone beside him:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

2

Objectives:

• Write a program that lets you input the triangle’s base size and height.
• Compute the area of a triangle by turning the above equation into code.
• Write the result of the computation.

50 LEVEL 7 MATH

SPECIAL NUMBER VALUES
Each of the 11 numeric types—eight integer types and three floating-point types—defines a
handful of special values you may find useful.

All 11 define a MinValue and a MaxValue, which is the minimum and maximum value they
can correctly represent. These are essentially defined as variables (technically properties,
which we’ll learn more about in Level 20) that you get to through the type name. For example:

int aBigNumber = int.MaxValue;
short aBigNegativeNumber = short.MinValue;

These things are a little different than the methods we have seen in the past. They are more
like variables than methods, and you don’t use parentheses to use them. (They are actually
properties, which we will discuss in Level 20.)

The double and float types (but not decimal) also define a value for positive and negative
infinity called PositiveInfinity and NegativeInfinity:

double infinity = double.PositiveInfinity;

Many computers will use the ∞ symbol to represent a numeric value of infinity. This is the
symbol used for infinity in the math world. Awkwardly, some computers (depending on
operating system and configuration) may use the digit 8 to represent infinity in the console
window. That can be confusing if you are not expecting it. (You can tweak settings to get the
computer to do better.)

double and float also define a weird value called NaN, or “not a number.” NaN is used when
a computation results in an impossible value such as division by zero. You can refer to it as
shown in the code below:

double notAnyRealNumber = double.NaN;

INTEGER DIVISION VS. FLOATING-POINT DIVISION
Try running this program and see if the displayed result is what you expected:

int a = 5;
int b = 2;
int result = a / b;
Console.WriteLine(result);

On a computer, there are two approaches to division. Mathematically, 5/2 is 2.5. If a, b, and
result were all floating-point types, that’s what would have happened. This division style is
called floating-point division because it is what you get with floating-point types.

The other option is integer division. When you divide with any of the integer types, fractional
bits of the result are dropped. This is different from rounding; even 9/10, which
mathematically is 0.9, becomes a simple 0. The code above is dealing with only integers, and
so it will use integer division. 5/2 becomes 2 instead of 2.5, and that is what is placed into
result.

This does take a little getting used to, and it will catch you by surprise from time to time. If you
want integer division, use integers. If you want floating-point division, use floating-point
types. Both have their uses. Just make sure you know which one you need and which one
you’ve got.

DIVISION BY ZERO 51

DIVISION BY ZERO
In the math world, division by zero is not defined—a meaningless operation without a
specified result. When programming, you should also expect problems when dividing by zero.
Once again, integer types and floating-point types have slightly different behavior here,
though in both cases, the answer is still “bad things.”

If you divide by zero with integer types, your program will produce an error that, if left
unhandled, will crash your program. (We talk about error handling of this nature in Level 35.)

If you divide by zero with floating-point types, you do not get the same kind of crash. Instead,
it assumes that you actually wanted to division with an impossibly tiny but non-zero number
(an “infinitesimal” number), and the result will either be positive infinity, negative infinity, or
NaN depending on whether the numerator was a positive number, negative number, or zero
respectively. Mathematical operations with infinities and NaNs always result in more infinities
and NaNs, so it is in your best interest to protect yourself against dividing by zero in the first
place when you can.

MORE OPERATORS
Addition, subtraction, multiplication, and division are not the only operators in C#. There are
many more. We will cover a few more here and others throughout this book.

Unary + and - Operators
While + and – are typically used for addition and subtraction, which requires two operands (a
- b, for example), both have a unary version, requiring only a single operand:

int a = 3;
int b = -a;
int c = +a;

For -, this indicates the negative version of the value. Since a is 3, -a results in -3. It changes
the sign of a. Or you could think of it as multiplying it by -1. That is, if a were -5, b would be
assigned a value of +5. The sign is reversed.

For +, nothing actually changes for any of the numeric types we have seen so far. +a is the same
as a. But the operator exists and use it when it adds clarity to the code (to contrast it with -).
For example:

int a = 3;
int b = -(a + 2) / 4;
int c = +(a + 2) / 4;

The Remainder Operator
Suppose I bring 23 apples to the apple party (doctors beware) and you, me, and Johnny are at
the party. There are two ways we could divide the apples. 23 divided 3 ways does not come out
even. We could chop up the apples and have fractional apples (we’d each get 7.67 apples).
Alternatively, if apple parts are not valuable (I don’t want just a core!), then we can set aside
anything that doesn’t divide out evenly. This leftover amount is called the remainder. That is,
each of the three of us would get 7 whole apples, with a remainder of 2.

52 LEVEL 7 MATH

C#’s remainder operator computes remainders in this same fashion using the % symbol. (Some
call this the modulus operator or the mod operator, though those two terms mean slightly
different things for negative numbers.) Computing the leftover apples looks like this in code:

int leftOverApples = 23 % 3;

The remainder operator may not seem all that useful at first glance, but it has its uses. In this
book, we will see that one common use is to decide if some number is a multiple of another
number. If so, the remainder would be 0. Consider this code:

int remainder = n % 2; // If this is 0, then 'n' is an even number.

If remainder is 0, then the number is divisible by two—which also tells us that it is an even
number.

The remainder operator has the same precedence as multiplication and division.

Challenge The Four Sisters and the Duckbear 100 XP
Four sisters own a chocolate farm and collect chocolate eggs laid by chocolate chickens every day. But
more often than not, the number of eggs is not evenly divisible among the sisters, and everybody knows
you cannot split a chocolate egg into pieces without ruining it. The arguments have grown more heated
over time. The town is tired of hearing the four sisters complain, and Chandra, the town’s Arbiter, has
finally come up with a plan everybody can agree to. All four sisters get an equal number of chocolate
eggs every day, and the remainder is fed to their pet duckbear. All that is left is to have some skilled
Programmer build a program to tell them how much each sister and the duckbear should get.

Objectives:

• Create a program that lets the user enter the number of chocolate eggs gathered that day.
• Using / and %, compute how many eggs each sister should get and how many are left over for the

duckbear.
• Answer this question: What are three total egg counts where the duckbear gets more than each

sister does? Use the program you created to help you find the answer.

UPDATING VARIABLES
The = operator is the assignment operator, and while it looks the same as the equals sign, it
does not imply that the two sides are equal. Instead, it indicates that some expression on the
right side should be evaluated and then stored in the variable shown on the left.

It is common for variables to be updated with new values over time. It is also common for the
expression used to determine the variable’s new value to use the variable's current value. As
an example, the following code increases the value of a by 1:

int a = 5;
a = a + 1; // the variable a will have a value of 6 after running this line.

That second line will cause a to grow by 1, regardless of what was previously in it.

The above code shows how assignment differs from the mathematical idea of equality. In the
math world, a = a + 1 is an absurdity. No number exists that is equal to one more than itself.
But in C# code, where this is simply a statement to update the variable based on its current

UPDATING VARIABLES 53

value, it is commonplace. It is so common that there are some shortcuts for it. Instead of doing
a = a + 1;, we could do this instead:

a += 1;

This code is exactly equivalent to a = a + 1;, just shorter. The += operator is called a
compound assignment operator because it does some operation (addition, in this case) and a
variable assignment. There are compound assignment operators for each of the binary
operators we have seen so far, including +=, -=, *=, /=, and %=:

int a = 0;
a += 5; // The equivalent of a = a + 5; (a is 5 after this line runs.)
a -= 2; // The equivalent of a = a – 2; (a is 3 after this line runs.)
a *= 4; // The equivalent of a = a * 4; (a is 12 after this line runs.)
a /= 2; // The equivalent of a = a / 2; (a is 6 after this line runs.)
a %= 2; // The equivalent of a = a % 2; (a is 0 after this line runs.)

Increment and Decrement Operators
Adding one to a variable is called incrementing the variable, and subtracting one is called
decrementing the variable. These two words are derived from the words increase and decrease.
They move the variable up a notch or down a notch.

Incrementing and decrementing are so common (as we will soon see) that there are specific
operators for adding one and subtracting one from a variable. These are the increment
operator (++) and the decrement operator (--). These operators are both unary, requiring
only a single operand to work, but it must be a variable and not an expression. For example:

int a = 0;
a++; // The equivalent of a += 1; or a = a + 1;
a--; // The equivalent of a -= 1; or a = a – 1;

We will see many uses for these operators shortly.

Challenge The Dominion of Kings 100 XP
Three kings, Melik, Casik, and Balik, are sitting around a table, debating who has the greatest kingdom
among them. Each king rules an assortment of provinces, duchies, and estates. Collectively, they agree
to a point system that helps them judge whose kingdom is greatest: Every estate is worth 1 point, every
duchy is worth 3 points, and every province is worth 6 points. They just need a program that will allow
them to enter their current holdings and compute a point total.

Objectives:

• Create a program that allows the user to enter how many provinces, duchies, and estates they have.
• Add up the user’s total score, giving 1 point per estate, 3 per duchy, and 6 per province.
• Display the point total to the user.

Prefix and Postfix Increment and Decrement Operators
The way we used the increment and decrement operators above is the way they are typically
used. However, assignment statements are also expressions and return the value assigned to
the variable. Or at least, it does for normal assignment (with the = operator) and compound
assignment operators (like += and *=).

54 LEVEL 7 MATH

The same thing is true with the ++ and -- operators, but with a little nuance. These two
operators can be written before or after the variable that they modify. For example, you can
write either x++ or ++x, and both will increment x. The first is called postfix notation, and the
second is called prefix notation. When written as a complete statement (x++; or ++x;), there
is no meaningful difference between the two. But when you use them as part of an expression,
x++ evaluates to the original value of x, while ++x evaluates to the updated value of x:

int x;

x = 5;
int y = ++x;

x = 5;
int z = x++;

Whether we do x++ or ++x, x is incremented and will have a value of 6 after each code block.
But in the first part, ++x will evaluate to 6 (increment first, then determine the value of x),
meaning y will have a value of 6 as well. In contrast, in the second part, x++ will evaluate to 5
(capture the current value of x, increment x, then produce the original value), and z will have
a value of 5.

The same logic applies to the -- operator.

C# programmers rarely, if ever, use ++ and -- as a part of an expression. It is far more common
to use it as a standalone statement, so these nuances are rarely significant.

WORKING WITH DIFFERENT TYPES AND CASTING
Earlier, I said doing math that intermixes numeric types is problematic. Let’s address that now.

Most math operations are only defined for operands of the same type. For example, addition
is defined between two ints and two doubles, but not between an int and a double.

But we often need to work with different data types in our programs. C# has a system of
conversions between types. It allows one type to be converted to another type to facilitate
mixing types.

There are two broad categories of conversions. A narrowing conversion is one that risks losing
data in the conversion process. For example, converting a long to a byte could lose data if
the number is larger than what a byte can accurately represent. In contrast, a widening
conversion is one without the risk of losing information. A long can represent everything a
byte can represent, so there is no risk in making the conversion.

Conversions can also be explicit or implicit. An explicit conversion is one that the programmer
must specifically ask to happen. An implicit conversion is one that will occur automatically
without the programmer stating it.

As a general rule, narrowing conversions, which run the risk of losing data, are always explicit.
Widening conversions, which have no chance of losing data, are always implicit.

There are conversions defined among all of the numeric types in C#. When it is safe to do so,
these are implicit conversions. When it is not safe, these are explicit conversions. Consider
this code:

byte aByte = 3;
int anInt = aByte;

WORKING WITH DIFFERENT TYPES AND CASTING 55

The simple expression aByte has a type of byte. Yet, it needs to be turned into an int to be
stored in the variable anInt. Converting from a byte to an int is a safe, widening conversion,
so the computer will make this conversion happen automatically. The code above compiles
without you needing to do anything fancy.

If we are going the other way, from an int to a byte, the conversion is not safe, and for it to
compile, we need to specifically state that we want to use the conversion, knowing the risk
involved. To explicitly ask for a conversion, you use the casting operator, shown below:

int anInt = 3;
byte aByte = (byte)anInt;

The type to convert to is placed in parentheses before the expression to convert. This code
says, “I know anInt is an int, but I can deal with any consequences of turning this into a
byte, so please proceed with that conversion.”

You are allowed to write out a specific request for an implicit conversion using this same
casting notation (for example, int anInt = (int)aByte;), but it isn’t strictly necessary.

There are conversions from every numeric type to every other numeric type in C#. When the
conversion is a safe, widening conversion, they are implicit. When the conversion is a
potentially dangerous narrowing conversion, they are explicit. For example, there is an
implicit conversion from sbyte to short, short to int, and int to uint. Likewise, there is
an implicit conversion from byte to ushort, ushort to uint, and uint to ulong. There is
also an implicit conversion from any of the eight integer types to the floating-point types, not
not the other way around.

Casting conversions of this nature are not defined for every possible type, however. For
example, you cannot do this:

string text = "0";
int number = (int)text; // DOES NOT WORK!

There is no conversion defined (explicit or implicit) that goes from string to int. (But we
can always use our friend System.Convert and do int number = Convert.ToInt(
text);.)

Conversions and casting solve the two problems we noted earlier: math operations are not
defined for the “small” types, and intermixing types cause issues.

Consider this code:

short a = 2;
short b = 3;
int total = a + b; // a and b are converted to ints automatically.

There is no addition defined for the short type, but one does exist for the int type. The
computer will implicitly convert both to an int and use int’s + operation. This produces a
result that is an int, not a short, so if we want to get back to a short, we need to cast it:

short a = 2;
short b = 3;
short total = (short)(a + b);

That last line brings up an important point: the casting operator has higher precedence than
the other operators we have discussed. To let the addition happen first and the casting second,

56 LEVEL 7 MATH

we must put the addition in parentheses to force it to happen first. (We could have also
separated the addition and the casting conversion onto two separate lines.)

Casting and conversions also fix the second problem that intermixing types can cause.
Consider this code:

int amountDone = 20;
int amountToDo = 100;
double fractionDone = amountDone / amountToDo;

Since amountDone and amountToDo are both ints, the division is done as integer division,
giving you a value of 0. (Integer division ditches fractional values, and 0.2 becomes a simple
0.) This int value of 0 is then implicitly converted to a double (0.0). But that’s probably not
what was intended. If we convert either of the parts involved in the division to a double, then
the division happens with floating-point division instead:

int amountDone = 20;
int amountToDo = 100;
double fractionDone = (double)amountDone / amountToDo;

Now, the conversion of amountDone to a double is performed first. Division is not defined
between a double and an int, but it is defined between two doubles. The program knows it
can implicitly convert amountToDo to a double to facilitate that. So amountToDo is
“promoted” to a double, and now the division happens between two doubles using floating-
point division, and the result is 0.2. At this point, the expression is already a double, so no
additional conversion must happen as it is assigned to the variable fractionDone.

Keeping track of how complex expressions work can be tricky. It gets easier with practice, but
don’t be afraid to separate parts onto separate lines to make it easier to think through.

OVERFLOW AND UNDERFLOW
In the math world, numbers can get as big as they need to. Mathematically, integers don’t have
an upper limit. But our data types do. A byte cannot get bigger than 255, and an int cannot
represent the number 3 trillion. What happens when we try to surpass this (intentionally or
accidentally)?

Consider this code:

short a = 30000;
short b = 30000;
short sum = (short)(a + b); // Too big to fit into a short. What happens?

Mathematically speaking, it should be 60000, but the computer gives a value of -5536.

When some operation causes a value to go beyond what its type can represent on the
computer, it is called overflow. For integer types, this results in wrapping around back to the
start of the range—0 for unsigned types and a large negative number for signed types. Stated
differently, int.MaxValue + 1 exactly equals int.MinValue. There is a danger in pushing
the limits of a data type: it can lead to weird results. The original Pac-Man game had this issue
when you go past level 255 (it must have been using a byte for the current level). The game
went to an undefined level 0, which was glitchy and unbeatable.

Performing a narrowing conversion with a cast is a fast way to cause overflow, so cast wisely.

THE MATH AND MATHF CLASSES 57

With floating-point types, the behavior is a little different. Since all floating-point types have a
way to represent infinity, if you go too far up or too far down, the number will switch over to
the type’s positive or negative infinity representation. Math with infinities just results in more
infinities (or NaNs), so even though the behavior is different from integer types, the
consequences are just as significant.

Floating-point types have a second category of problems called underflow. With a float, the
number 10000 can be correctly represented, as can 0.00001. In the math world, you can safely
add those two values together to get 10000.00001. But a float cannot. It only has six or seven
digits of precision and cannot distinguish 10000 from 10000.00001.

float a = 10000;
float b = 0.00001f;
float sum = a + b;

sum will also hold a value of 10000 after the addition. Underflow is not a problem in most
situations, but every so often, especially when adding many tiny numbers, the lost digits begin
to accumulate. In some cases, you can sidestep this by using a more precise type. For example,
neither double nor decimal have trouble with this specific situation. But all three have it
eventually, just at different times.

THE MATH AND MATHF CLASSES
C# also includes two classes, similar to the Console and Convert classes, but with the job of
helping you do common math operations. These classes are called the System.Math class
and the System.MathF class. We won’t cover everything contained in them, but it is worth a
brief overview.

π and e
The special, named numbers e and π are defined in Math so that you do not have to redefine
them yourself (and run the risk of making a typo). These two numbers are Math.E and
Math.PI respectively. For example, this code calculates the area of a circle (Area = πr2):

double area = Math.PI * radius * radius;

Powers and Square Roots
C# does not have a power operator in the same way that it has multiplication and addition.
But Math provides methods for doing both powers and square roots: the Pow and the Sqrt
method:

double x = 3.0;
double xSquared = Math.Pow(x, 2);

Pow is the first method that we have seen that needs two pieces of information to do its job.
The code above shows how to use these methods: everything goes into the parentheses,
separated by commas.

For Pow, you must supply two pieces of information. First is the base, and second is the power
to raise it to. So Math.Pow(x, 2) above is the same as x2.

To do a square root, you use the Sqrt method:

58 LEVEL 7 MATH

double y = Math.Sqrt(xSquared);

Absolute Value
The absolute value of a number is merely the positive version of the number. The absolute
value of 3 is 3. The absolute value of -4 is 4. The Abs method computes absolute values:

int x = Math.Abs(-2); // Will be 2.

Trigonometric Functions
The Math class also includes many trigonometric functions like sine, cosine, and tangent. It is
beyond this book's scope to explain these trigonometric functions, but certain types of
programs (including games) use them heavily. If you need them, the Math class is where to
find them with the names Sin, Cos, and Tan. (There are others as well.) All expect angles in
radians, not degrees.

double y1 = Math.Sin(0);
double y2 = Math.Cos(0);

Min, Max, and Clamp
The Math class also has methods for returning the minimum and maximum of two numbers:

int smaller = Math.Min(2, 10);
int larger = Math.Max(2, 10);

Here, smaller will contain a value of 2 while larger contains a value of 10.

There is another related method that is convenient: Clamp. This allows you to provide a value
and a range. If the value is within the range, that value is returned. If that value is lower than
the range, it produces the low end of the range. If that value is higher than the range, it
produces the high end of the range:

health += 10;
health = Math.Clamp(health, 0, 100); // Keep it in the interval 0 to 100.

More
This is a slice of some of the most widely used Math class methods, but there is more than
what is listed here. Explore the choices when you have a chance so that you are familiar with
the other options.

The MathF Class
The MathF class provides many of the same methods as Math but uses floats instead of
doubles. For example, Math’s Pow method expects doubles as inputs and returns a double
as a result. You can cast that result to a float, but MathF makes casting unnecessary:

float x = 3;
float xSquared = MathF.Pow(x, 2);

LEVEL 8
CONSOLE 2.0

 Speedrun
• The Console class can write a line without wrapping (Write), wait for just a single keypress

(ReadKey), change colors (ForegroundColor, BackgroundColor), clear the entire console window
(Clear), change the window title (Title), and play retro 80’s sounds (Beep).

• Escape sequences start with a \ and tell the computer to interpret the following letter differently.
\n is a new line, \t is a tab, \" is a quote within a string literal.

• An @ before a string ignores any would-be escape sequences: @"C:\Users\Me\File.txt".
• A $ before a string means curly braces contain code: $"a:{a} sum:{a+b}".

We have come far in our journey. It is time to flesh out our knowledge of the console and learn
some tricks to make working with text and the console window easier and more exciting.
While a console window isn’t as flashy as a GUI or a web page, it doesn’t have to be boring.

THE CONSOLE CLASS
We’ve been using the Console class since our very first Hello World program, but it is time we
dug deeper into it to see what else it is capable of. Console has many methods and provides
a few of its own variables (technically properties, as we will see in Level 20) that we can use to
do some nifty things.

The Write Method
Aside from Console.WriteLine, another method called simply Write, does all the same
stuff as WriteLine, without jumping to the next line when it finishes. There are many uses for
this, but one I like is being able to ask the user a question and letting them answer on the same
line:

Console.Write("What is your name, human? "); // Notice the space at the end.
string userName = Console.ReadLine();

60 LEVEL 8 CONSOLE 2.0

The resulting program looks like this:

What is your name, human? RB

The Write method is also useful for putting many smaller bits of text onto a line in stages.

The ReadKey Method
The Console.ReadKey method does not wait for the user to push enter before completing. It
waits for only a single keypress. So if you want to do something like a “Press any key to
continue…” thing, you can use Console.ReadKey:

Console.WriteLine("Press any key when you're ready to begin.");
Console.ReadKey();

This code has a small problem. If a letter is typed, that letter will still show up on the screen.
There is a way around this. The ReadKey method has two versions defined (called an
“overload,” but we’ll cover that in more detail in Level 13). One version, shown above, has no
inputs. The other version has an input whose type is bool, which indicates whether the text
should be “intercepted” or not. If it is intercepted, it will not be displayed in the console
window. Using this version looks like the following:

Console.WriteLine("Press any key when you're ready to begin.");
Console.ReadKey(true);

Changing Colors
The next few items we will talk about are not methods but properties. There are important
differences between properties and variables, but for now, it is reasonable for us to just think
of them as though they are variables.

The Console class also provides variables representing (and allow you to change) the colors
it uses for displaying text. We’re not stuck with just black and white! This is best illustrated with
an example, so let’s just dive in:

Console.BackgroundColor = ConsoleColor.Yellow;
Console.ForegroundColor = ConsoleColor.Black;

After assigning new values to these two variables, the console will begin using black text on a
yellow background. BackgroundColor and ForegroundColor are both variables instead of
methods, so we don’t use parentheses as we have done in the past. These variables belong to
the Console class, so we access them through Console.VariableName instead of just by
variable name like other variables we have used. These lines assign a new value to those
variables, though we have never seen anything like ConsoleColor.Yellow or
ConsoleColor.Black before. ConsoleColor is an enumeration, a topic we will learn more
about in Level 16. The short version is that an enumeration defines a set of values in a
collection and gives them each a name. Yellow and Black are the names of two items in the
ConsoleColor collection.

The Clear Method
After changing the console’s background color, you may notice that it doesn’t change the
window's entire background, just the background of the new letters you write. You can use

SHARPENING YOUR STRING SKILLS 61

Console’s Clear method to wipe out all text on the screen and changing the entire
background to the newly set background color:

Console.Clear();

For better or worse, this does wipe out all the text currently on the screen (its primary
objective, in truth), so you will want to ensure you do it only at the right moments.

Changing the Window Title
Console also has a Title variable, which will change the text displayed in the console
window's title bar. Its type is a string.

Console.Title = "Hello World!";

Just about anything is better than the default name, which is usually nonsense like “C:\Users\
RB\Source\Repos\HelloWorld\HelloWorld\bin\Debug\netcoreapp3.1\ HelloWorld.exe”.

The Beep Method
The Console class can even beep! (Before you get too excited, the only sound the console
window can make is a retro 80’s square wave.) The Beep method makes the beep sound:

Console.Beep();

If you’re musically inclined, there is a version that lets you choose both frequency and
duration:

Console.Beep(440, 1000);

This Beep method needs two pieces of information to do its job. List each piece of information
in the parentheses, separating them by commas.

The first item is the frequency. The higher the number, the higher the pitch, but 440 is a nice
middle pitch. (The Internet can tell you which frequencies belong with which notes.) The
second piece of information is the duration, measured in milliseconds (that is, 1000 is a full
second, 500 is a half a second, etc.). You could imagine using Beep to play a simple melody,
and indeed, some people have spent a lot of time doing just this and posting their code to the
Internet.

SHARPENING YOUR STRING SKILLS
Let’s turn our attention to a few features of strings to make them more powerful.

Escape Sequences
Here is a chilling challenge: how do you display a quote mark? This does not work:

Console.WriteLine("""); // ERROR: Bad quotation marks!

The compiler sees the first double quote as the start of a string and the second as the end. The
third begins another string that never ends, and we get compiler errors.

An escape sequence is a sequence of characters that do not mean what they would usually
indicate. In C#, you start escape sequences with the backslash character (\), located above the

62 LEVEL 8 CONSOLE 2.0

<Enter> key on most keyboards. A backslash followed by a double quote (\") instructs the
compiler to interpret the character as a literal quote character within the string instead of
interpreting it as the end of the string:

Console.WriteLine("\"");

The compiler sees the first quote mark as the string's start, the middle \" as a quote character
within the text, and the third as the end of the string.

A quotation mark is not the only character you can escape. Here are a few other useful ones:
\t is a tab character, \n is a new line character (move down to the next line), and \r is a
carriage return (go back to the start of the line). (In the console window, going down a line
with \n also goes back to the beginning of the line.)

So what if we want to have a literal \ character in a string? There’s an escape sequence for the
escape character as well: \\. This allows you to include backslashes in your strings:

Console.WriteLine("C:\\Users\\RB\\Desktop\\MyFile.txt");

That code displays the following:

C:\Users\RB\Desktop\MyFile.txt

In some instances, you do not care to do an escape sequence, and the extra slashes to escape
everything are just in your way. You can put the @ symbol before the text (called a verbatim
string literal) to instruct the compiler to treat everything exactly as it looks:

Console.WriteLine(@"C:\Users\RB\Desktop\MyFile.txt");

String Interpolation
It is common to mix simple expressions among fixed text. For example:

Console.Write("My favorite number is " + myFavoriteNumber + ".");

This code uses the + operator with strings to combine multiple strings (often called string
concatenation instead of addition). We first saw this in Level 3, and it is a useful tool. But with
all of the different quotes and plusses, it can get hard to read. String interpolation allows you
to embed expressions within a string by surrounding it with curly braces:

Console.WriteLine($"My favorite number is {myFavoriteNumber}.");

To use string interpolation, you put a $ before the string begins. Within the string, enclose any
expressions you want to evaluate inside of curly braces like myFavoriteNumber is above. It
becomes a fill-in-the-blank game for your program to perform. Each expression is evaluated
to produce its result. That result is then turned into a string and then placed in its spot in the
overall text.

String interpolation usually gives you much more readable code, but be wary of many long
expressions embedded into your text. Sometimes, it is better to compute a result and store it
into a variable first.

You can combine string interpolation and verbatim strings by using $ and @ in either order.

Alignment
While string interpolation is powerful, it is only the beginning. Two other features make string
interpolation even better: alignment and formatting.

SHARPENING YOUR STRING SKILLS 63

Alignment lets you can display a string with a specific preferred width. Blank space is added
before the value to reach the desired width if needed. Alignment is useful if you try to structure
text in a table and need things to line up horizontally. To specify a preferred width, place a
comma and the desired width in the curly braces after your expression to evaluate:

string name1 = Console.ReadLine();
string name2 = Console.ReadLine();
Console.WriteLine($"#1: {name1,20}");
Console.WriteLine($"#2: {name2,20}");

If my names were Steve and Captain America, the output would be:

#1: Steve
#2: Captain America

This code reserves 20 characters for the name’s display. If the length is less than 20, it adds
whitespace before it to achieve the desired width.

If you want the whitespace to be after the word, use a negative number:

Console.WriteLine($"{name1,-20} - 1");
Console.WriteLine($"{name2,-20} - 2");

This has the following output:

Steve - 1
Captain America - 2

There are two notable limitations to preferred widths. First, there is no convenient way to
center the text. Second, if the text you are writing is longer than the preferred width, it won’t
truncate your text, but just keep writing the characters, which will mess up your columns.
There are ways to work through both of these yourself manually, but there is nothing
automatic to do it for you.

Formatting
With interpolated strings, you can also perform formatting. Formatting allows you to provide
hints or guidelines about how you want to display data. Formatting is a deep subject that we
won’t exhaustively cover here, but let’s look at a few examples.

You may have seen that when you display a floating-point number, it writes out lots of digits.
For example, Console.WriteLine(Math.PI); displays 3.141592653589793. You often
don’t care about all those digits and would rather round. The following instructs the string
interpolation to write the number with three digits after the decimal place:

Console.WriteLine($"{Math.PI:0.000}");

Formatting requires putting a format string after a colon after the expression to evaluate. (This
also comes after the preferred width if you use both.) This displays 3.142. (It even rounds!)

Any 0 in the format indicates that you want a number to appear there even if the number isn’t
strictly necessary. For example, using a format string of 000.000 with the number 42 will
display 042.000.

In contrast, a # will leave a place for a digit but will not display a non-significant 0 (a leading
or trailing 0):

64 LEVEL 8 CONSOLE 2.0

Console.WriteLine($"{42:#.##}");// Displays "42"
Console.WriteLine($"{42.1234:#.##}");// Displays "42.12"

You can also use the % symbol to make a number be represented as a percent instead of a
fractional value. For example:

float currentHealth = 4;
float maxHealth = 9;
Console.WriteLine($"{currentHealth/maxHealth:0.0%}"); // Displays "44.4%"

Several shortcut formats exist. For example, using just a simple P for the format is equivalent
to 0.00%, and P1 is equal to 0.0%. Similarly, a format string of F is the same as 0.00, while F5
is the same as 0.00000.

There are quite a few other symbols you can use for format strings, but that is enough to give
us a basic toolset to work with as we move onto more challenging programs.

Challenge The Defense of Consolas 200 XP
The Uncoded One has begun an assault on the city of Consolas; the
situation is dire. From a moving airship called the Manticore,
massive fireballs capable of destroying city blocks are being
catapulted into the city.

The city is arranged in blocks, numbered like a chessboard.

The city’s only defense is a movable magical barrier, operated by a
squad of four, that can protect a single city block by putting
themselves in each of the target’s four adjacent blocks, as shown in
the picture to the right.

For example, to protect the city block at (Row 6, Column 5), the
crew deploys themselves to (Row 6, Column 4), (Row 5, Column 5),
(Row 6, Column 6), and (Row7, Column 5).

The good news is that if we can compute the deployment locations fast enough, the crew can be
deployed around the target in time to prevent catastrophic damage to the city for as long as the siege
lasts. The city of Consolas needs a program to tell the squad where to deploy, given the anticipated target.
Something like this:

Target Row? 6
Target Column? 5
Deploy to:
(6, 4)
(5, 5)
(6, 6)
(7, 5)

Objectives:

• Ask the user for the target row and column.
• Compute the neighboring rows and columns of where to deploy the squad.
• Display the deployment instructions in a different color of your choosing.
• Change the window title to be “Defense of Consolas”.
• Play a sound with Console.Beep when the results have been computed and displayed.

This is a preview. These pages have been

excluded from the preview.

GLOSSARY

.NET
The ecosystem that C# is a part of. It encompasses the .NET
SDK, the compiler, the Common Language Runtime,
Common Intermediate Language, the Base Class Library,
and app models for building specific types of applications.
(Levels 1 and 50.)

.NET Core
The original name for the current cutting-edge .NET
implementation. After .NET Core 3.1, this became simply
.NET 5. (Level 50.)

.NET Framework
The original implementation of .NET that worked only on
Windows. This flavor of .NET is still broadly used, but most
new development happens on the more modern .NET
implementation. (Level 50.)

.NET Standard
A specification that defines what types should belong in the
Base Class Library so that you can write code that runs on
any of the various .NET implementations. (Levels 50.)

.NET Standard Library
See .NET Standard.

0-based Indexing
A scheme where indexes for an array or other collection type
start with item number 0 instead of 1. C# uses this for almost
everything.

Abstract Class
A class that you cannot create instances of; you can only
create instances of derived classes. A class must be abstract
to contain abstract members. (Level 26.)

Abstract Method
A method declaration that does not provide an
implementation or body. Abstract methods can only be
defined in abstract classes. Derived classes that are not
abstract must provide an implementation of the method.
(Level 26.)

Abstraction
The object-oriented concept where if a class keeps its inner
workings private, those internal workings won’t matter to
the outside world. It also allows those inner workings to
change without affecting the rest of the program. (Level 19.)

Accessibility Level
Types and their members indicate how broadly accessible
or visible they are. The compiler will then ensure that other
code uses it in a compliant manner. Making something
more hidden gives you more flexibility to change it later
without significantly affecting the rest of the program.
Making something less hidden allows it to be used in more
places. The private accessibility level means something can
only be used within the type it is defined in. The public
accessibility level means it can be used anywhere and is
intended for general reuse. The protected accessibility
level indicates that something can only be used in the class
it is defined in or derived classes. The internal
accessibility level indicates that it can be used in the
assembly it is defined in, but not another. The private
protected accessibility level indicates that it can only be
used in derived classes in the same assembly. The
protected internal accessibility level can be used in
derived classes or the assembly it is defined in. (Levels 19,
25, and 47.)

Accessibility Modifier
See accessibility level.

444 GLOSSARY

Ahead-of-Time Compilation
C# code is compiled to CIL instructions by the C# compiler
and then turned into hardware-ready binary instructions as
the program runs with the JIT compiler. Ahead-of-time
compilation moves the JIT compiler’s work to the same time
as the main C# compiler. This makes the code operating
system- and hardware architecture-specific but speeds up
initialization.

Anonymous Type
A class without a formal type name, created with the new
keyword and a list of properties. E.g., new { A = 1, B = 2 }.
They are immutable. (Level 20.)

AOT Compilation
See ahead-of-time compilation.

App Model
One of several frameworks that are a part of .NET, intended
to make the development of a specific type of application
(web, desktop, mobile, etc.) easy. (Level 50.)

Architecture
This word has many meanings in software development.
For hardware architecture, see Instruction Set Architecture.
For software architecture, see object-oriented design.

Argument
The value supplied to a method for one of its parameters.

Arm
A single branch of a switch. (Level 10.)

Array
A collection of multiple values of the same type placed
together in a list-like structure. (Level 12.)

ASP.NET
An app model for building web-based applications. This
book does not cover any app models in depth. (Level 50.)

Assembler
A simple program that translates assembly instructions into
binary instructions. (Level 49.)

Assembly
Represents a single block of redistributable code used for
deployment, security, and versioning. A .dll or .exe file. Each
project is compiled into its own assembly. See also project
and solution. (Level 3.)

Assembly Language
A low-level programming language where each instruction
corresponds directly to a binary instruction the computer

can run. Essentially, a human-readable form of binary.
(Level 49.)

Assignment
The process of placing a value in a variable. (Level 5.)

Associative Array
See dictionary.

Associativity
See operator associativity.

Asynchronous Programming
Allowing work to be scheduled for later after some other task
finishes to prevent threads from getting stuck waiting. (Level
44.)

Attribute
A feature for attaching metadata to code elements, which
can then be used by the compiler and other code analysis
tools. (Level 47.)

Auto-Property
A type of property where the compiler generates the backing
field and basic get and set logic automatically. (Level 20.)

Automatic Memory Management
See managed memory.

Awaitable
Any type that can be used with the await keyword. Task
and Task<T> are the most common. (Level 44.)

Backing Field
A field that a property uses as a part of its getter and setter.
(Level 20.)

Base Class
In inheritance, the class that another is built upon. The
derived class inherits all members (except constructors)
from the base class. Also called a superclass or a parent
class. See also inheritance, derived class, and sealed class.
(Level 25.)

Base Class Library
The standard library available to all programs made in C#
and other .NET languages. (Level 50.)

BCL
See Base Class Library.

This is a preview. These pages have been

excluded from the preview.

INDEX

Symbols
!= operator, 69
- operator, 47
--operator, 53
π, 57
! operator, 71, 168
#define, 378
#elif, 378
#else, 378
#endif, 377
#endregion, 377
#error, 376
#if, 377
#region, 377
#undef, 378
#warning, 376
& operator, 360, 373
&& operator, 71
&= operator, 374
* operator, 47, 359
.. operator, 88
/ operator, 47
?. operator, 166
?? operator, 167
?[] operator, 166
@ symbol, 62
[] operator, 85
^ operator, 88, 373
^= operator, 374
| operator, 373
|| operator, 71
|= operator, 374
~ operator, 373
~= operator, 374
+ operator, 47
< operator, 69
<< operator, 372
<<= operator, 374

<= operator, 70
== operator, 66
=> operator, 77, 295
> operator, 69
-> operator, 360
>= operator, 70
>> operator, 372
>>= operator, 374
.cs file, 15
.csproj file, 15, 401
.dll, 448
.NET, 8, 10, 396, 443
.NET 5, 397
.NET Core, 397, 443
.NET Framework, 396, 443
.NET MAUI, 400
.NET Multi-platform App User Interface, 400
.NET Standard, 399, 443
.sln file, 401

0
0-based indexing, 86, 443

A
absolute value, 58
abstract class, 200, 443
abstract keyword, 201
abstract method, 200, 443
abstraction, 150, 443
accessibility level, 147, 443
accessibility modifier, 147, See accessibility level
acquiring a lock, 340
Action (System), 285
add keyword, 292
addition, 47
Address Of operator, 360
ahead-of-time compilation, 395, 444
algorithm, 47

INDEX 465

allocating memory, 103
and keyword, 311
and pattern, 311
Android, 10
anonymous type, 160, 444
AOT compilation. See ahead-of-time compilation
app model, 399, 444
architecture, 394, 444
argument, 95, 444
arm, 444
array, 85, 444
as keyword, 196
ascending keyword, 327
ASP.NET, 400, 444
assembler, 393, 444
assembly, 393, 444
assembly language, 444
assignment, 444, 451, 455
associative array, 444
async keyword, 346
asynchronous programming, 342, 444
attribute, 367, 444

defining, 369
auto property, 157
auto-implemented property, 157
automatic memory management, 115, 444
auto-property, 444
await keyword, 346
awaitable, 349, 444

B
backing field, 156, 444
backing store, 156
base class, 190, 444
Base Class Library, 10, 19, 237, 256, 394, 398, 444
base keyword, 194
BCL. See Base Class Library
binary, 392, 445
binary literal, 445
binary operator, 47
BinaryReader (System.IO), 305
BinaryWriter (System.IO), 305
bit, 35, 392, 445
bit field, 372, 445
bit manipulation, 372, 445
bitshift operator, 372
bitwise operator, 445
Blazor, 400
block, 445
block body, 99, 445
block statement, 66
body. See method body
bool, 42
Boolean, 445
Boolean (System), 216
boxing, 216
boxing conversion, 216
break keyword, 76, 82
breakpoint, 440, 445

conditions and actions, 442
build configuration, 25, 401
built-in type, 35, 445
built-in type alias, 215
by keyword, 331
byte, 35, 37, 392, 445
Byte (System), 216

C
C, 10
C#, 9
C++, 10, 445
call. See method call
callback, 343, 445
called method, 94
callee, 94
caller, 94
calling method, 94
camelCase, 34
captured variable, 297
case guard, 310
case keyword, 76
casting, 55, 445
catch block, 445
catching exceptions, 272
char, 39
Char (System), 216
character, 445
checked context, 382, 445
checked keyword, 383
child class, 190
CIL, 394, 397
clamp, 58
class, 20, 122, 136, 137, 446

compared to structs, 212
creating instances, 138
default field values, 140
defining, 137
defining constructors, 140
sealing, 197

class keyword, 137
class library, 398
clause (query expressions), 325
ClickOnce, 403
closure, 297, 446
CLR. See Common Language Runtime
Code Editor window, 18
code library, 386
Code Window, 427, 446
collaborator, 172
collection initializer syntax, 88, 446
command line arguments, 446
command-line arguments, 378
comment, 26, 446
Common Intermediate Language, 394, 397, 446
Common Language Runtime, 394, 397, 446
compiler, 18, 393, 446
compiler error, 24, 433, 446

suggestions for fixing, 434
compiler warning, 433, 446
compile-time constant, 263, 366
compiling, 18, 391
composite type, 130, 446
composition, 130
compound assignment operator, 53, 446
concrete class, 201, 446
concurrency, 334, 446
concurrency issue, 339
condition, 66
conditional compilation symbol, 377, 446
conditional operator, 72
Console (System), 20
const, 366
const keyword, 366
constant, 366, 446
constant pattern, 308

466 INDEX
constructor, 139, 140, 446

default parameterless constructor, 446
parameterless, 142

context switch, 335, 446
continuation clause, 330
continue keyword, 82
contravariant, 382
Convert (System), 44
cosine, 58
covariance, 382
CRC card, 447
CRC cards, 172
critical section, 339, 447
curly braces, 447
custom conversion, 320, 447

D
dangling pointer, 447
dangling reference, 115
data structure, 447
DateTime (System), 239
deadlock, 340, 447
deallocating memory, 103
debug, 447
debugger, 438, 447
debugging, 25, 438
decimal, 40
Decimal (System), 216
declaration, 93, 447
declaration pattern, 309
deconstruction, 133, 447
deconstructor, 267
decrement, 447
decrement operator, 53
default keyword, 76, 230
default operator, 230
deferred execution, 331, 447
delegate, 282, 447
delegate chain, 286
delegate keyword, 283
dependency, 447
dependency (project), 387
derived class, 190, 447
deriving from classes, 190
descending keyword, 327
deserialization, 447
design, 136, 169, 447
desktop development, 399
dictionary, 447
Dictionary<TKey, TValue> (System.Collections.Generic), 246
digit separator, 38, 447
directed graph, 110
Directory (System.IO), 303
discard, 134, 447
discard pattern, 308
divide and conquer, 447
division, 47
division by zero, 51, 448
DLLImport (System.Runtime.InteropServices), 363
do/while loop, 81
dot operator. See member access operator
dotnet command line interface, 13, 404
dotnet command-line interface, 398
double, 40
Double (System), 216
downcasting, 195
dynamic keyword, 353
dynamic object, 352, 448

dynamic objects, 352
dynamic type checking, 352, 448
DynamicObject (System.Dynamic), 355

E
E notation, 448
early exit, 97, 448
Edit and Continue, 442
else if statement, 69
else statement, 68
encapsulation, 138, 448
entry point, 19, 258, 448
enum. See enumeration
enum keyword, 125
enumeration, 124, 448
equality operator, 66
equals keyword, 330
Equals method, 191
Error List, 431, 448
escape sequence, 61
evaluation, 448
event, 287, 448

custom accessors, 292
leak, 290
null, 290
raising, 288
subscribing, 289

event keyword, 288
event leak, 448
EventHandler (System), 291
EventHandler<TEventArgs> (System), 291
exception, 271, 448

guidelines for using, 276
rethrow, 279

Exception (System), 272
exception filter, 281
exception handler, 272
EXE, 448
ExpandoObject (System.Dynamic), 354
explicit, 448
explicit conversion, 54
explicit keyword, 321
exponent, 57
expression, 448
expression body, 99, 448
extending classes, 190
extension method, 448
extern keyword, 363

F
F#, 10, 394, 397
false keykword, 42
field, 138, 448

default value, 140
initialization, 142

File (System.IO), 299
file stream, 305
files, 299
FileStream (System.IO), 305
finally block, 275
finally keyword, 275
fire (event), 288
fixed size array, 448
fixed statement, 360, 449
fixed-point type, 40
fixed-size array, 361

INDEX 467

fixed-size buffer, 361
flags enumeration, 374
float, 40
floating point type, 449
floating-point division, 50, 449
floating-point type, 40, 449
for loop, 81
foreach loop, 90
forever loop, 80
frame. See stack frame
framework-dependent deployment, 404, 449
from clause, 326
from keyword, 326
fully qualified name, 21, 254, 449
Func (System), 285
function, 259, 449

G
game development, 400
garbage collection, 115, 398, 449
garbage collector, 116
generic method, 227
generic type, 222, 225, 449

inheritance, 227
generic type argument, 225, 449
generic type constraint, 449
generic type constraints, 228
generic type parameter, 225, 449

multiple, 226
generic variance, 380, 449
generics, 222

constraints, 228
inheritance, 380
motivation for, 222

get keyword, 155
GetHashCode method, 248
get-only property, 158
getter, 148, 155, 449
GetType method, 195
global keyword, 258
global namespace, 255, 449
global state, 162, 449
goto keyword, 380
graph, 110
group by clause, 331
guard expression, 310
Guid (System), 241

H
hash code, 248, 449
heap, 108, 450
hexadecimal, 450
hexadecimal literal, 39

I
IAsyncEnumerable<T> (System.Collections.Generic), 349,

366
IDE. See integrated development environment
IDisposable (System), 375
IDynamicMetaObjectProvider (System.Dynamic), 354
IDynamicMetaObjectProvider interface, 354
IEnumerable<T> (System.Collections.Generic), 245, 325
if statement, 65

IL, 394
immutability, 158, 450
implicit, 450
implicit conversion, 54
implicit keyword, 320
in keyword, 267
increment, 450
increment operator, 53
index, 86, 450
index initializer syntax, 319
indexer, 318, 450
indexer operator, 86
indirection operator, 360
infinite loop, 80, 450
infinity, 50
information hiding, 146
inheritance, 189, 450

constructors, 193
inheritance hierarchy, 193
inheritance relationship, 190
init keyword, 159
initialization, 450
inner exception, 280
input parameter, 267
instance, 122, 137, 450
instance field, 162
instance variable. See field
instruction set architecture, 393, 450
int type, 31
Int16 (System), 216
Int32 (System), 216
Int64 (System), 216
integer, 31
integer division, 50, 450
integer type, 36
integral type, 36, 450
integrated development environment, 11, 450
IntelliSense, 428, 450
interface, 203, 450

and base classes, 206
default methods, 207
defining, 204
explicit implementation, 206
implementing, 205

interface keyword, 204
internal keyword, 152
into clause, 330
into keyword, 330
invocation. See method call
iOS, 10
is keyword, 196, 313
ISA, 394
iterator, 365, 451

J
jagged array, 91, 451
Java, 10, 451
JetBrains Rider, 12
JIT compiler, 394
jitter, 394
join clause, 329
join keyword, 329
Just-in-Time compilation, 398
Just-in-Time compiler, 394, 451

468 INDEX

K
keyword, 21, 451

L
label, 380
labeled statement, 380
lambda expression, 294, 451
lambda statement, 296
Language Integrated Query, 324, 451
lazy evaluation, 451
let clause, 330
let keyword, 330
library, 306, 386, 398
LINQ, 324
LINQ to SQL, 332
Linux, 10
List<T> (System.Collections.Generic), 242
listener, 288
literal, 451, See literal value
literal value, 31
local function, 259, 297, 451
local variable, 95, 451
lock keyword, 339
logical operator, 71, 451
long, 37
loop, 79, 451
lowerCamelCase, 34

M
macOS, 10
main method, 19, 94, 448, 451
Main method, 258
managed code, 451
managed memory, 451
math, 46
Math (System), 57
MathF (System), 58
MAUI, 400
maximum, 58
member, 452
member access operator, 20
memory address, 29, 452
memory allocation, 452
memory leak, 115, 452
memory management, 102
memory safety, 398, 452
method, 20, 92, 259, 262, 452
method body, 93, See method implementation
method call, 20, 93, 452
method call syntax, 328, 452
method group, 99, 452
method implementation, 452
method invocation. See method call
method overload, 98, 452
method signature, 452
Microsoft Developer Network, 423
minimum, 58
mobile development, 400
Mono, 396, 452
MonoGame, 400
MSBuild, 401
MSIL, 394
MulticastDelegate (System), 286
multi-dimensional array, 90, 452
multiplication, 47

multi-threading, 334, 452
mutex, 339, See mutual exclusion
mutual exclusion, 339, 452
MVC, 400

N
name collision, 256, 452
name hiding, 143, 452
named argument, 263, 452
nameof operator, 370
namespace, 20, 254, 437, 452
namespace keyword, 254
NaN, 50, 453
narrowing conversion, 54, 453
native code, 358, 453
native integer types, 362
nested pattern, 311
nested type, 370
nesting, 72, 83, 453
new keyword, 201
new method, 201
nint, 362
not keyword, 311
not pattern, 311
noun extraction, 171, 453
NuGet, 388
NuGet Package Manager, 453
nuint, 362
null, 87
null check, 166
null conditional operator, 166
null keyword, 165
null reference, 165, 453
nullable type, 453
Nullable<T> (System), 248
null-coalescing operator, 167
null-forgiving operator, 168

O
object, 122, 136, 190, 453
Object (System), 190, 216
object initializer syntax, 159
object keyword, 190
object-initializer syntax, 453
object-oriented design, 136, 145, 169, 453

rules, 176
object-oriented programming, 121, 453
observer, 288
ObsoleteAttribute (System), 367
on keyword, 330
operation, 47, 453
operator, 47, 453

binary, 445
ternary, 457
unary, 457

operator associativity, 48, 453
operator keyword, 317
operator overloading, 316, 453
operator precedence, 48, 453
optional arguments, 262
optional parameter, 262, 453
or keyword, 311
or pattern, 311
order of operations, 48, 453
orderby clause, 327
orderby keyword, 327

INDEX 469

out keyword, 266, 381
out-of-order execution, 453
output parameter, 266
overflow, 9, 56, 453
overload. See method overload
overload resolution, 98, 454
overloading, 453
override keyword, 199
overriding methods, 199

P
P/Invoke, 362
package, 388, 454
package manager, 388
parameter, 95, 141, 454

variable number of, 263
parameterful property, 318
parameterless constructor, 142
params keyword, 263
parent class. See base class
parentheses, 454
parse, 454
parsing, 45
partial class, 379, 454
partial keyword, 379
partial method, 379
PascalCase, 34
passing, 95
passing by reference, 264, 454
passing by value, 264
Path (System.IO), 304
pattern matching, 77, 307
pi, 57
pinning, 360
Platform Invocation Services, 362, 454
pointer member access operator, 360
pointer type, 359, 454
polymorphism, 198, 454
positional pattern, 312
positional record, 220
postfix notation, 54
power (math), 57
PowerShell, 10
Predicate (System), 285
prefix notation, 54
preprocessor directive, 376, 454
primitive type. See built-in type
print debugging, 439, 454
private keyword, 147
private protected accessibility level, 371
program order, 455
programming language, 9, 393
project, 455
project configuration, 15
project template, 15
Properties Window, 430
property, 154, 455
property pattern, 310
protected accessibility modifier, 196
protected internal accessibility level, 371
protected keyword, 196
pseudo-random number generation, 238
public keyword, 147
publish profile, 402
publishing, 401

Q
query expression, 324, 455
query syntax, 455
Quick Action, 429

R
raise (event), 288
Random (System), 238
range operator, 88
range variable, 326
Razor Pages, 400
readonly keyword, 158
read-only property, 158
record, 218, 455

inheritance, 220
positional and non-positional, 220

rectangular array, 91, 455
recursion, 100, 455, See recursion
ref keyword, 265
ref local variable, 267
ref return, 267
refactor, 455
refactoring, 181
reference, 109, 455
reference (project), 387
reference semantics, 114, 455
reference type, 111, 455
reflection, 369, 455
relational operator, 69, 455
remainder, 51
remove keyword, 292
requirements, 170, 455
responsibility, 172
rethrowing exceptions, 279
return, 93, 97, 455
return (methods), 24
return keyword, 97
return type, 455
returning early, 97
Rider. See JetBrains Rider
runtime, 10, 394, 455

S
sbyte, 37
SByte (System), 216
scheduler, 335, 455
scientific notation, 41
scope, 455, 456
SDK. See Software Development Kit
sealed class, 197, 456
sealed keyword, 197
seed, 238
select clause, 325
select keyword, 325
self-contained deployment, 404
serialization, 301
set keyword, 155
setter, 148, 155
short, 37
SignalR, 400
signed type, 37, 456
sine, 58
Single (System), 216
sizeof operator, 362

470 INDEX
software design, 136, 169
Software Development Kit, 10, 398
solution, 456
Solution Explorer, 18, 430, 456
source code, 15, 456
Span<T> (System), 267
square brackets, 456
square root, 57
stack, 103, 456
stack allocation, 361, 456
stack frame, 104, 456
stack trace, 279, 456
stackalloc keyword, 361
standard library, 398, 456
statement, 20, 456
static, 161, 456
static class, 164
static constructor, 163
static field, 161
static keyword, 161
static method, 163
static property, 162
static type checking, 352, 456
static using directive, 257
stream, 305
Stream (System.IO), 305
StreamReader (System.IO), 305
StreamWriter (System.IO), 305
string, 23, 39, 456
String (System), 216
string formatting, 63
string interpolation, 62
string manipulation, 301
StringBuilder (System.Text), 249
struct, 211, 456

compared to classes, 212
struct keyword, 212
subclass, 190
subtraction, 47
superclass, 190
switch, 74, 456
switch arm, 74
switch expression, 76

guard, 310
switch keyword, 75
switch statement, 75
symbol, 377
synchronization context, 348
synchronization issue, 339
synchronous programming, 342, 456
syntax, 19

T
tangent, 58
task, 344, 457
Task (System.Threading.Tasks), 344
Task<T> (System.Threading.Tasks), 344
ternary operator, 47, 72
this keyword, 144
thread, 334, 457
Thread (System.Threading), 335
thread pool, 347, 457
thread safety, 338, 339, 457
Thread.Sleep, 338
threading, 334
threading issue, 339
ThreadPool (System.Threading), 347
throw keyword, 274

throwing exceptions, 272
TimeSpan (System), 240
top-level statement, 258, 457
ToString method, 191
trigonometric functions, 58
true keyword, 42
try keyword, 272
TryParse methods, 266
tuple, 129

deconstruction, 133
element names, 131
equality, 134
in parameters and return types, 132

type, 122, 457
Type (System), 195, 369
type inference, 43, 457
type pattern, 309
type safety, 398, 457
typecasting, 457
typeof keyword, 195

U
uint, 37
UInt16 (System), 216
UInt32 (System), 216
UInt64 (System), 216
ulong, 37
UML, 172
unary operator, 47
unboxing, 216, 457
unboxing conversion, 216
unchecked context, 457
unchecked keyword, 383
underflow, 56, 457
underlying type, 127, 457
Unicode, 40
Unified Modeling Language, 172
Unity game engine, 400
Universal Windows Platform, 399, 457
unmanaged code, 358, 457
unmanaged type, 359
unpacking, 133, 457
unsafe code, 358, 457
unsafe context, 359, 457
unsafe keyword, 359
unsigned type, 37, 457
unverifiable code, 359
UpperCamelCase, 34
user-defined conversion, 458
ushort, 37
using directive, 21, 256, 458
using keyword, 256
using statement, 375, 458
UWP, 399

V
value keyword, 156
value semantics, 114, 458
value type, 111, 458
ValueTask (System.Threading.Tasks), 349
ValueTask<T> (System.Threading.Tasks), 349
ValueTuple (System), 249
var, 43
var pattern, 313
variable, 23, 29, 458

assignment, 30

INDEX 471

declaration, 23, 30
initialization, 30
naming, 33

variance, 382
verbatim string literal, 62
virtual keyword, 199
virtual machine, 394, 458
virtual method, 199, 458
Visual Basic, 10, 394, 397, 458
Visual Studio, 17, 426, 458

Community Edition, 11
Enterprise Edition, 12
Installer, 13
Professional Edition, 12

Visual Studio Code, 12, 458
Visual Studio for Mac, 12
void keyword, 93
volatile field, 383, 458
volatile keyword, 384

W
Web API, 400
web development, 400

where clause, 326
where keyword, 326
while keyword, 79
while loop, 79
whitespace, 21
widening conversion, 54
Windows, 10
Windows Forms, 399, 458
Windows Presentation Foundation, 399, 458
WinForms, 399
with expression, 220
with keyword, 220
WPF, 399

X
Xamarin Forms, 400, 458
XML Documentation Comment, 99, 458

Y
yield keyword, 365

	1 Table of Contents
	2 Acknowledgments
	1 Introduction
	The Great Game of Programming
	Book Features
	Speedruns
	Challenges
	Knowledge Checks
	Experience Points and Levels
	Narratives and the Plot
	Side Quests
	Glossary
	The Website

	I Want Your Feedback
	An Overview

	The Basics
	1 The C# Programming Language
	What is C#?
	What is .NET?

	2 Getting an IDE
	A Comparison of IDEs
	Visual Studio
	Visual Studio Code
	Visual Studio for Mac
	JetBrains Rider
	Other IDEs
	No IDE

	Installing Visual Studio

	3 Hello World: Your First Program
	Creating a New Project
	A Brief Tour of Visual Studio
	Compiling and Running Your Program
	The Adventure Begins
	using Directives
	Multiple Statements
	Expressions
	Variables
	Reading Text from the Console

	Compiler Errors, Debuggers, and Configurations
	Compiler Errors
	Debugging
	Build Configurations

	4 Comments
	How to Make Good Comments

	5 Variables
	What is a Variable?
	Creating and Using Variables in C#
	Integers
	Reading from a Variable Does Not Change It
	Clever Variable Tricks
	Variable Names

	6 The C# Type System
	Representing Data in Binary
	Integer Types
	Declaring and Using Variables with Integer Types
	The Digit Separator
	Choosing Between the Integer Types
	Binary and Hexadecimal Literals

	Text: Characters and Strings
	Floating-Point Types
	Scientific Notation

	The bool Type
	Type Inference
	The Convert Class

	7 Math
	Operations and Operators
	Addition, Subtraction, Multiplication, and Division
	Compound Expressions and Order of Operations
	Special Number Values
	Integer Division vs. Floating-Point Division
	Division by Zero
	More Operators
	Unary + and - Operators
	The Remainder Operator

	Updating Variables
	Increment and Decrement Operators
	Prefix and Postfix Increment and Decrement Operators

	Working with Different Types and Casting
	Overflow and Underflow
	The Math and MathF Classes
	π and e
	Powers and Square Roots
	Absolute Value
	Trigonometric Functions
	Min, Max, and Clamp
	More
	The MathF Class

	8 Console 2.0
	The Console Class
	The Write Method
	The ReadKey Method
	Changing Colors
	The Clear Method
	Changing the Window Title
	The Beep Method

	Sharpening Your String Skills
	Escape Sequences
	String Interpolation
	Alignment
	Formatting

	54 Glossary
	56 Index

